Efficient Algorithms for a Family
of Matroid Intersection Problems¥*

by
Harold N. Gabow

Robert E. Tarjan f+

MSU‘CS'214'82 January, 1982

* A preliminary version of this paper appeared in the Proceedings of
the 20th Annual Symposium on the Foundations of Computer Science,
San Juan, Puerto Rico [GT].

+ Department of Computer Science, University of Colorado, Boulder,
Colorado 80309. The work of this author was supported in part by
the National Science Foundation under grant MCS78-18909.

1+ Computer Science Department, Stanford University, Stanford,
California 94305, and currently at Bell Laboratories, Murray Hill,
New Jersey 07974. The work of this author was supported in part by
the National Science Foundation under grant MCS75-22870, by the
Office of Naval Research, Contract N 00014-76-C-0688, and by a
Guggenheim Fellowship.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JAN 1982 2. REPORT TYPE 00-01-1982 to 00-01-1982
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Efficient Algorithmsfor a Family of Matroid I nter section Problems £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0O,80309-0430

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 89
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract. Consider a matroid where each element has a real-valued cost
and a color, red or green; a base is sought that contains g red elements

and has smallest possible cost. An algorithm for the probTem on general

matroids is presented, along wiﬁh a number of variatfons. Its efficiency
is demonstrated by implementations on specific matroids. In all cases

but one, the running time matches the best-known algorithm for the problem
without the red element constraint.

On graphic matroids, a smallest spanning tree with g red edges
can be found in time 0(nlogn) more than what is needed to find
a minimum spanning tree. A special case is finding a smallest spanning
tree with a degree constraint; here the time is only O(m+n) more than
that needed to find one minimum spanning tree.

On transversal and matching matroids, the time is the same as the
best-known algorithms for a minimum cost base. This also holds for
transversal matroids for convex graphs, which model a scheduling problem
on unit-length jobs with release times and deadlines.

On partition matroids, a linear-time algorithm is presented.
Finally an algorithm related to our general approach finds a smallest
spanning tree on a directed graph, where the given root has a degree
constraint. Again the time matches the best-known algorithm for the

problem without the red element (i.e., degree) constraint.

Key Words. matroid, matroid intersection problem, swap, graph, minimum
cost spanning tree, degree constraint, matching, convex bipartite graph,
job schedule, release times and deadlines, partition matroid, Tinear-

time selection, minimum cost directed spanning tree.

1. Introduction.

Matroids offer a model for a wide variety of discrete mathematical
structures. This paper investigates a combinational problem from a general
matroid point of view, and also from the viewpoint of specific matroids.

To state the problem, consider a matroid where each element has a real-
valued cost and a color, red or green. We seek a base of the matroid
that has smallest possible cost subject to the constraint that it contains
exactly q red elements, for a given q.

Our problem can be viewed as a matroid intersection problem. To
do this Tet one matroid be the given one and Tet a second matroid be a
partition matroid induced by the coloring; we seek a minimum cost base
of the two matroids. The general matroid intersection problem is
‘polynomially-bounded, but the time bound is of high degree [L2,L1 pp.300-355]
Our family of intersection problems can be solved more efficiently because

of the simple structure of the second matroid.

Section 2 reviews some relevant notions from matroid theory.
Section 3 presents an algorithm for our problem on general matroids, along
with several variations. Applications to specific matroids are given in

the following sections.

Section 4 investigates graphic matroids. Here the problem is to
find a smallest spanning tree (or forest) that contains exactly q red
edges. Our general algorithm runs in time O(m log 1og(2+m/n)n
+ nlogn)in 1s‘the number of Veftices, m the number df édges),

This is on1y'0(n10g n) time more than the time to solve the
problem without the red element constraint. Section 4 also investigates

the problem of finding a smallest spanning tree where a given vertex has

prespecified degree. This problem arises in the design of certain
communication networks. Previous algorithms have been given [GK], the best
4al

using time 0(m Tog 1og(qLM,_\n+-n1og n) [Gall. The problem is a spe

ayaVal Ao~
LT T P Lastc

of our problem, where the edges incident to the given vertex comprise one
color. MWe show this special case can be solved in time

| 00n10g1og()n); more precisely, the time is the time to find one

2+m/n
minimum spanning tree plus O(m+n) extra processing. (So in this case our
problem is Tinear-time equiva]ént td the problem without the red element
(i.e., degree) constraint.) |

Section 5 investigates matching matroids and in particular,
transversal matroids for convex bipartite graphs. Our probiem on the latter
class corresponds to the following scheduling problem: A machine executes n
unit-length jobs, chosen from a set of m jobs; each job has a cost, release time,
deadline,and job class (red or green); fihd a smallest cost schedule with
exactly q jobs of the red class. If all release times are 0, we give an
O(m+nTogn) time algorithm. If release times are arbitrary, we give an
0(m Tog n+-n2) algorithm. In a general matching or transversal matroid, we
give an O(mlogmtne) time algorithm (here m is the number of vertices
of the graph, n is the number of edges +in a maximum matching (thus n.<.m),
and e is the number of edges in the graph.) In all cases our time bound
equals the best-known bound for finding a minimum cost base of the
matroid without the red element constraint.

Section 6 investigates partition matroids. Here the problem is,
given a set with a partition, where each element has a cost and color;

th lock

find a smallest subset containing exactly n; elements from the i
of the partition, and exactly q red elements. We give a linear-time

(and hence optimal) algorithm for this problem.

Section 7 discusses the problem of finding a smallest directed
spanning tree with a prespecified root, where the root has a prespecified
degree. This is closely related to our matroid intersection problem.
However, since the solution is a base of»three matroids rather than two,
the general theory does not apply. We present an O(”1109(2+m/n)n)
algorithm. Again this bound matches the best-known algorithm for the
problem without the degree constraint.

For the algorithms that are not optimal we give a weak type of
Tower bound: We show that, in a well-defined sense, any algorithm using
an approach similar to ours has a nonlinear lower bound. In some cases
this bound matches our upper bound.

A11 of our algorithms easily generalize to the problem where the
desired base contains at most (or at least) g red elements. Thus this paper
gives evidence that a "q red elements" constraint can often be handled

efficiently.

2. Matroid Preliminaries.

This section reviews some basic facts about matroids. It is
assumed that the reader is familiar with an introductory treatment of
matroids, suchas [L1,Ch.7] or [W,Ch.1]. Our terminology comes mainly
from the former. Definitions of fundamental concepts such as independent
set, base, and circuit can be found in these sources.

We use a convenient shorthand notation for set operations: If
S is a set and e an element, then S + e is the set S v {e}, and § - e
is S - {e}. We sometimes use + instead of u, as in B - G + R (for sets
B, G, R). When parentheses are omitted, operators are associated to the
left, e.g., S + e - f is (S+e) - f.

We use graphic matroids to illustrate the discussion on general

matroids. A graphic matroid derives from a graph or multigraph.* The

elements of the matroid are the edges of the graph. The independent sets
are the forests, and the bases are the spanning forests (or spanning trees,
if the graph is connected). Figure 2.1 shows a graph (with solid and
dotted edges); Figure 2.2 gives several bases. (We will give a more

precise description of these figures shortly.)

Our results follow from one simple property of matroids,which can

be included in a set of matroid axioms:

Symmetric Swap Axiom [B, Wp. 15]. If B1 and 82 are bases and element

f e Bl’ then there is an element e ¢ B2 such that both B1 - f + e and

82 - e + f are bases.

The Symmetric Swap Axiom is a strong formulation of the more standard

base axiom of a matroid [L1, p. 274]. It can be derived

*Throughout this paper graphs are undirected unless explicitly specified
otherwise. Also when our algorithms work on multigraphs we say so and then
proceed to give the discussion in terms of graphs.

from the independence axiom [L1,p.268]withlittle difficulty. In Figure
2.2 bases Blz and 84 have the symmetric swap of edges 2,5.

Another important notion is the fundamental circuit C(e,B) for

an element e and a base B, where e ¢ B. This is the unique circuit in
B +e. C(e,B) always exists for e ¢ B, and e ¢ ¢(e,B) [L,p270].

If S is a set of elements, deleting S from M gives the matroid
M-S. Its elements are those of M, excluding S. Its independent sets
are the independent sets of M that do not intersect S. If S is an
independent set of elements of M, contracting S gives the matroid M/S.
Its elements are also those of M, excluding S. Its independent sets
(respectively, bases) are the setsIof elements of M/S such that I u S
is an independent set (base) of M. (We restrict ourselves to contracting
independent sets for convenience only) .

In this paper we investigate the following problem. Given is a
matroid M. Each element e has a real-valued cost gigl, Each element

is colored either red or green. We seek a minimum cost base that

contains exactly g red elements, for a given value q.

In the graphic matroid of Figure 2.1, the red edges are solid and
the green edges are dotted. Fach edge is labelled by its cost. For
convenience we identify an edge by its cost (e.q., edge 2 is the edge of
cost 2). These conventions are used in all figures of the paper.

Figure 2.2 shows bases Bi’ i=20, ..., 4, where Bi is the smallest cost

base with exactly 1 red edges.

We make the following conventions. m denotes the number of elements

(@]
—+,
=

, and n denotes the number of elements in a base (i.e., the rank

f the matreid).* For convenience we often omit explicit references to
element costs. For instance we say an element e is a smallest element of
a set S if it has the smallest cost c(e); similarly we refer to Targest
element, smallest base, etc. Finally, 81 denotes the set of all bases
with exactly i red elements and smallest cost possible. Our problem

is to find a base in Bq. Note that there are integers £ and u such that
81 is nonempty exactly when £ < i < u. This is easy to prove using the

independence axiom for matroids. It also follows from Theorem 3.1 below.

Our problem can be viewed as a matroid intersection problem. Define
a matroid M' on the given elements, where a base of M' contains exactly

q red elements and n-q green elements. M' is a partition matroid (see
Section 7 for the general definition). Thus our problem is to find a

smallest set that is a base in both M and M', or less precisely, a smallest

intersection of M and a (special) partition matroid.

* Note that in a graphic matroid this convention differs from the usual
one for graphs. We take n as the number of edges in a spanning forest,
whereas it is usually the number of vertices in the graph. The first
quantity is always less than the second, and they differ by one for
connected graphs. We only use n in asymptotic estimates, and as will
be seen, these two properties allow n to be interpreted either way in
these estimates.

3. The General Algorithm.

This section presents an algorithm for our intersection problem on
arbitrary matroids; useful variations are also given. The efficiency is
illustrated for the case of graphic matroids. Subsequent sections show that

the algorithm and its variants are efficient on other matroids.

| The resQTts of this section were discovered independently by
Dan Gusfield [Gu]. Gusfield investigates the problem of
uniformly modifying the costs of redl e]ements. His derivation is
concise and elegant,and contains all the results of this section {either
explicitly or implicitly). Here we give our own development (different
from Gusfield's). so the paper is self-contained. (Also, éome ideas of
this section for the special case of graphic matroids. appear in
[Gal], [U].).

The general matroid intersection problem can be solved by augmenting
paths [L1,pp.326-48]. 1In our problem these paths are particularly simple,

as we now show.

Definition 3.1. A swap for a base B is an ordered pair of elements (e,f),

where e ¢ B is green, f ¢ B is red and B - e + f is a base. The cost of
(e,f) is c(f) - c(e).

We say that (e,f) is a swap for f, for f and B, etc. Following a

previous convention, we say (e,f) is a smallest (largest) swap if its

cost is as small (large) as possible.
Figure 2.2 shows four swaps executed serially on the matroid of

Figure 2,%.V A base Bi € Bi derives from !31.__1 € Bi—l

by a swap. The
following result shows‘thiﬁ is true in general.

Theorem 3.1 (Augmentation Theorem). Suppose B is a base in 61_1 and

B: # . If (e,f) is a smallest swap for B, then B - e + f ¢ Bi‘
Proof. It suffices to find a swap (e,f) such that B - e + f ¢ 8,. For
this implies that (e,f) is a smallest swap for B, and further, any smallest
swap for B gives a base in Bi' (Also it implies that the swap of the
Theorem always exists).

Choose base B' « B; such that IBaB'| is maximum. Let f be a red
element in B -B (f exists since B' has more red elements than B.) By
the Symmetric Swap Axiom, there is an element e ¢ B such that B-e+f
and B' - f+e are bases. Clearly e = f.

We show e is green by contradiction.. If e is red then B' - f+e
is a base with i red elements. Thus c(B'-f+e)2c(B'), so cle)=c(f).
Similarly examining base B-e+f shows c(f) > c(e). We conclude
c(e) = c(f). Thus B' -f+e is a base in B, having more elements in common
with B than B'. This {s the desired contradiction.

Now since e is green, B-e+f is a base with i red elements, and
B'-f+e is a base with i - 1 red elements. The Tatter implies
c(B'-f+e) = c(B), or equivalently ¢c(B') = c(B-e+f). This inequality

shows B-e+f ¢ Bi’ as desired. [

Note that this proof is easily modified to show that Bi =z) exactly
when £ < i < u, for two integers £ and u (see Section 2). (If Bles

Bs:tw for r<s, show B z0 by starting with B ¢ Br and choosing

r+l

B e B, as in the proof).
The Augmentation Theorem implies an algorithm for our problem:
Start with a base in BK’ In general, having derived a base in Bi’ find

a smallest swap and derive a base in Bi Repeat this procedure until

+1°

a base 1in Bq is derived.

-10-

We improve the efficiency of this approach in several ways. First
we show that the elements involved in swaps can be drawn from a restricted

set. Recall u is the largest index with 8 = 0.

Corollary 3.1. Let B be a base in B;_p and B a base in By Then there

is a smallest swap (e,f) for B, with e ¢ B-B' and f ¢ B' -B.

Proof. Let (g,h) be a smallest swap for B. We first find a smallest
swap (g,f) with f ¢ B'-B. Then we find the desired swap (e,f).

The Symmetric Swap Axiom applied to h, B-g+h and B' shows there
is an element f ¢ B' such that B-g+f and B' - f+h are bases. f is red.
For otherwise since h is red, B' - f+h is a base with u + 1 red elements,
which is impossible.

Since f is red, f # g. Since B-g+f is a base, we have
feB -Band (g,f) is a swap for B. For (g,f) to be a smallest swap
we must have c(h) = c(f). To see this, note B - f+h has u red elements,
so ¢(B'-f+h) = c(B"), and c(h) = c(f). Thus (g,f) is as desired.

If g ¢ B', then take e = g, and swap (e,f) gives the Corollary.
Otherwise find e by applying the Symmetric Swap Axiom to g, B-g+f, and

B'. The argument is analogous to the one above and is left to the reader. [J

Another useful fact is that swaps get progressively more expensive.
Corollary 3.2 is a formulation of this fact that is used in Section 4.2;
Corollary 3.3 is another formulation.

Corollary 3.2. Let B be a base containing a green element e. Let (e,f) be

a smallest swap involving e, and set B' = B-e+f. For any green element
g e B-e, let (g,h), (g,h') be smallest swaps for g and bases B, B,

respectively. Then c(g,h) < c(g,h').

-11-

Proof. Clearly we may assume (g,h') is not a valid swap for B. Now apply
the Symmetric Swap Axiom to g, B and B-—e-+f-g+?f, to show that
B-g+f and B-e+h' are bases. The former shows (g,f) is a swap (for B),

whence c(f) = c(h). The latter shows (e,h') is a swap, whence c(h'y = c(f).

Thus c(h') = c(h), as desired. T[]

Corollary 3.3. The cost of a base in Bi is a convex function of 7.

Proof. We need only show that the cost of an optimum swap (ei,fj) is

nondecreasing with i. This follows from the previous result. [

This Corollary shows how to solve a modified version of our problem,
where the desired base is the smallest one with at Teast (or at most) q red
elements. To do this first find a minimum cost base. If it satisfies
the red element constraint, it is the desired base. Otherwise the desired
base is the smallest one with exactly g red elements.

The time for this procedure is the time to find a minimum base plus
the time to solve the unmodified problem. The latter always dominates.
Thus the time estimates given in Sections 4-7 also hold for the modified
problem. | f

Returning to Corollary 3.1, we can find the desired base Bq as
follows. First find Bﬂ and Bu’ bases 1in BE and Bu’ respectively. Then
repeatedly swap a green element of Bﬁhfor a red element of Bu’ until
Bq is derived.

In this approach each swap must have the smallest cost pdssib1e.

The bulk of the time is spent searching for these smallest swaps. Searching
is complicated by the fact that each time a swap is executed, a new base
is derived. This changes the set of valid swaps, and necessitates new

searching. To cut down on the searching we derive an alternate

-12-

characterization of the swaps involved. This allows us to find the swaps
efficiently, although in a different order.
We call the desired sequence of swaps the "swap sequence." Actually

it is convenient to use this term in a sTight]y more general context.

Definition 3.2. Let B be a base and R an independent set of red elements.

Let By = B. Suppose for i =1, ..., r, B, =B, ;-e, +f,, where (ei’fi)
is a smallest swap for 81_1 that has fi e R; further, no swap for Br

and an element of R exists. Then (ei’fi)’ i=l, ..., r, is a swap sequence

(for B and R).

When B « Bz and R is the set of red elements in a base of Bu, then
the swap sequence is the one we seek. Figure 2.2 shows a swap sequence
for the example matroid.

The following idea is the key to our characterization of the swap
sequence. In Figure 2.1-2, consider 3, the smallest red element. The
smallest swap for 3 and B is (2,3). Although this is not the first
swap of the swap sequence (as one might guess), it is in the swap sequence.
It is not hard to see why: a green element in the circuit C(S,BO)
cannot give a better swap than (2,3); hence C(S,BO) is preserved until
swap (2,3) is made.

To state the result precisely, let h be a smallest element of R.
Let (g,h) be a smallest swap for h and B. In the matroid M-g/h, take
a swap sequence for base B-g and red elements R-h. Insert (g,h) as
the j +1st/ swap, where the swap sequence begins with j swaps strictly

smaller than (g,h). Call the resulting sequence S.
Lemma 3.1. S 1is a swap sequence for B and R.

Proof. First note that S is well-defined, i.e., in matroid M-g/h, B-g

-13-

and R-h are sets that have a swap sequence: B-g is a base of M-g/h,
since B-g+h 1is a base of M; similarly R-h is independent.

Now Tet S be the sequence (ei,fi), i=1, ...,r. (So for i = j+1,
(ei’fi) = (g,h).) Let BO==B, and for i =1, ...,r, let Bi:=Bi—1_éi.+fi'
We must show that (ei’fi) is a smallest swap for Bi-l’ for i=1,...,t.
The argument divides into three cases: the firstjswaps, the j + 1st
swap (g,h),and the remaining swaps.

Consider the first j swaps. We show that for i =1, ...,Jj, if
B1._1 is a base and circuit C(h’Bi—l) = C(h,B), then (ei’fi) is a smallest
swap for 81_1, and C(h,Bi) = C(h,B). Clearly this implies the desired
conclusion, by induction on 1.

Base B, ; is the result of executing swaps (e1.f1), coes (g pefi)
on base B, in matroid M. In matroid M- g/h, executing these same swaps

on base B - g givesBi_l-g. Now we show a useful proposition:

For elements e, f¢{g,h }, suppose (e,f) costs less than (g,h). Then
(e,f) is a swap for B: 1 (in M) if and only if it is a swap for B. ;-
(in M-g/h).

Notice that, in our induction on i, i goes from 1 to j. However in
this proposition, we allow i = j+1. The proof given below still applies,
and the proposition is useful in the next case, the j+ Ist swap.

The proposition is equivalent to showing that in M, Bi—l -e+f is
a base if and only if Bi_l-g-e+-f4-h is a base. Since (e,f) costs Tess
than (g,h), and c(f) = c(h), it follows that c(e) > c(g). Thus, by the
definition of g, e ¢ C(h,B) = C(h’Bi~1)' Now suppose B, _; - e+f is a
base, call it A. Then A + h contains the circuit C(h,B), and

A-g+h = Bi- -g-e+f+h is a base, as desired. Conversely, suppose

1
Bi—l -g-e+f+h is a base, call it A'. Then A' + g contains C(h,B),

-14-

andA'-h+g =B, ,-e+f is a base, as desired. This proves the

1
proposition.

Now (ei’fi) is a swap for B,;_1 -g(in M-g/h), costing strictly Tess
than (g,h). The proposition shows (ei’fi) is a swap for B, ;. Also, from
the proof of the proposition, e, ¢ C(h’Bi-l)’ and so C(h,Bi) = C(h’Bi—l) =
C(h,B). It remains to show that (ei’f1> is a smallest swap for B, ;.
Suppose, on the contrary, that a swap (e,f) costs less. If e, f ¢ {g,h},
then the proposition shows (e,f) is a swap for Bi-l -g. But this contradicts

the definition of (ei’fi)' Thuse=gorf = h. Since C(h,B = C(h,B),

/ i-1)
the smallest swap involving g or h is (g,h). (Recall h has smallest cost).
But (g,h) costs more than (ei’fi)' These contradictions show (ei’fi) is

a smallest swap for Bi— This completes the analysis of the first j swaps.

1
For the j + 1st swap, we must show that (g,h) is a smallest swap
for Bj“ From the induction made for the first j swaps, C(h,Bj) = C(h,B).
Thus (g,h) is a swap for Bj’ The proposition of that induction (valid for
i=j+1) shows that if there is a smaller swap for Bj than (g,h), there is
also a smaller one for Bj-g (in M-g/n). The latter is false by supposition.
Hence (g,h) is a smallest swap for Bj, as desired.
Finally consider the remaining swaps. We show by induction that
for i = j+2, ..., 1, (ei’fi) is a smallest swap for 81_1. Base Bi-l is
the result of executing swaps (el,fl),..., (ei_igfi;l)gonf%. Inmatroid M-g/h,
executing these same swaps, except for (ej+1’fj+1) = (g,h), on B-g,
gives 81_1 -h. It is easy to see that (e,f) is a swap for B1._1 (in M)
if and only if it is a swap for B. 4 -h (in M-g/h). Thus (ei’fi) is

a smallest swap for Bi as desired. [J

-1

The Lemma can be used idteratively to find a complete swap sequence.

The following definition is useful.

-15-

Definition 3.3. Let B be a base and let R be a set of red elements such

that R plus the red elements of B form an independent set. Order the
elements of R as h,,i=1,...,r, so that the cost is nondecreasing. Let

HO = B. Suppose 9; and Hi’ i=1,...,r, are such that Hi = Hi-l"gi+ hi
and (gi’hi) is a smallest swap for h, and H, ;. Then (gi’hi)’ i=1,

.., r, is a restricted swap sequence (for B and R).

The term "restricted swap sequence" derives from the fact that we
have restricted the order in which the red e1ements get swapped into the
base. Also note that the initial condition given on R is for notational
convenience only. One consequence is that |R| becomes the Tength of a
swap sequence. Figure 3.1 shows a restricted sequence.

Note that a restricted swap sequence for B and R always exists,
i.e., for each element hi’ there is a swap (gi’hi): The circuit
C(hi’Hi-l) contains a green element, since the red elements of B and R
are independent. Now 9; exists as a largest green element of C(hi’Hi—l)'

In Figure 3.1, for i =1, 2, 3, Hi is not a base in the optimum set

Bi' However a restricted sequence does give the desired swaps:

Corollary 3.4. A restricted swap sequence for B and R can be rearranged

to form a swap sequence for B and R.

Proof. The proof is by induction on r. The base case r = 0 is vacuous.
For r > 0, Lemma 3.1 shows (gl’hl) is in a swap sequence, where the
remaining swaps form a swap sequence for B -9 and R--h1 in matroid
M-—gl/hl. It is easy to check that (gi’hi)’ i=2,...,r is a restricted
swap sequence for B-—g1 and R-hl. By induction these swaps rearrange

to a swap sequence. The desired conclusion follows. 0O

-16-

To actually form the swap sequence, order swaps (gi,h.) of a
i
restricted sequence as follows: Sort (gi’hi)’ i=1,...,r s0
that their cost is nondecreasing and for swaps (gi’hi) of equal cost,

the index i is increasing.

Corollary 3.5. A restricted swap sequence, ordered as above, is a

swap sequence.

Proof. Argue as in Corollary 3.4. [

For some matrdids Corollaries 3.4 and 3.5 give the best way to
solve our problem. For other matroids a divide-and-conquer approach can
be more efficient. We modify the results for this approach as fb11ows:
Choose B and R as in Definition 3.3. Let R1 contain thet‘gifsma11est
elements of R, R1 = {hili =1, ...,L%j}. Let R2 contain the remaining
red elements, R2 = {h1|1 =ij%l-+1, ..., Tk Let G1 be a set ofiggjkgreen
elements such that B--Gl+R1 is a smallest base whose red e]eménté are
exactly the red elements of B u Rl' Let G2 be a subset of the remaining
green elements of B such that B--(G1 U Gz)+-R is a smallest base whose red
elements are exactly the red elements of B u R.

Intuitively we expect that a restricted sequence swaps elements
of G1 with elements of Rl’ and similarly for 62 and R2. This 1is correct
except for slight complications due to equal-cost elements. So in the
matroid M-—RZ/GZ, Tet S1 be a restricted swap sequence for base B - G

2

and red elements Rl' Let Gl' = {g](g,h) is in Sl}' (As indicated above,

it is not necessarily true that G1 = Gl'). In M-—Gll/Rl, let S2 be a

restricted swap sequence for B--G1 and RZ' Let 8182 be the sequence

formed by concatenating 82 onto the end of 31'

-17-

Corollary 3.6. 8152 is a restricted swap sequence and thus can be ordered
to form a swap sequence. for B and R.

Proof. We start by checking that the construction is well-defined. First
note the set G1 exists: There is some set of green elements G with

B-G+R, a base (e.g., {gi]i= 1, ..., {%‘J} in a restricted sequence).

1

G1 is a smallest set G. Similarly we see 62 exists. To check that the

sequence S, exists, note that in M-—RZ/GZ, B-62 is a base. Further, R1

1
plus the red elements of B«G2 is independent, since B-—Gl+R1 is a base
of M containing G,. To check that S, exists, note that in;M-G'l/Rl, B-G'; is
a base, since B - 61'4-R1 is a base of M. Further, R2 plus the red
elements of B-—Gl' is independent,since B-—(61LJGZ)+-R is a base of M
containing R1 and these red elements.

We prove the Corollary by induction on r. The case r =0 is vacuous .
Assume r > 0. Let Sl 5 = (gi,hi), i=1,...,r. InM, define Hi’ i=1,

., I by Hi = Hi—l —gi-Fhi, Now we must show that (gi’hi) is a smallest

swap for heand Hy 1, i=1,...,7.

First consider the case i = 1"""L§}l' h1nmtroide-R2/Gz,
swaps (gl,hl), "”(gi’hi) derive the basé Qi-GZ. Thus Hi is a base of M,
and (gi’hi) is a swap for Hi—l‘

Now Tet (g,hi) be a smallest swap for h. and Hi g We show (gi’hi)
costs no more, so it too is a smallest swap, as desired. First suppose
g ¢ G,. Then (g,hi) is a swap for H, ;-G, in M-R,/G,. Now the definition

of (gi’hi) impTies it costs no more than (g,hi).

On the other hand, suppose g € GZ' Consider (in matroid M) bases Bl==B -Gl+R1
82 = Hi—l —g-+hi. Note g € Bl‘ The Symmetric Swap Axiom applied to
g, Bl,and B2 shows there is an element gI 5 82 such that Bl—-g4-g' and

BZ-*Q +g are bases. Note that g' e Gl’ since the only elements of B, that

2
are not in Bl-g are in Gl' This implies, first of all, that

-18-

c(g) = c(g), since B, —g-+g’ is a base (recall the definition of Bl)’
It also implies c¢(g,) = c(g'), since Bz-g"+g is a base containing G,
(recall the definition of g.). These inequalities imply ¢(g;) = c(g). Thus

(gi’hi) costs no more than (g,hi), as desired.

Now consider the case i = f ., r. 'In M‘—VGi /Rl’ swaps

(9.,., »h)
2}

necessary that we use matroid M-—Gll/Rl, rather than M-—Gl[Rl.) It is

R ""(gi—l’hi—l) derive the base Hi—l"Rl' (Here it is

easy to see (g,hi) is a swap for H1._1 (in M) if and only if it is a

swap for H1._’1 - Ry (in M-—Gl'/Rl). This gives the desired result. 0O

The divide-and-conquer approach derives its efficiency from doing
the computation on smaller and smaller matroids. Toward this end the
following facts are useful.

Lemma 3.2. (a) Choose bases Bﬂ € Bz and Bu e B Let matroid

u .
1

M =M - (BK}JBU)/ (BZ,” Bu). Then a swap sequence for Bz - Bu and the

red elements of Bu"BKf in M', is a swap sequence for BE and the red

elements of Bu’ in M.

(b) Choose By < Bp. Then there is a base B ¢ 8 such that
in M' (defined as in (a)), BZ--Bu is a base of all green elements and

Bu —Bg’is a base of all red elements.

Proof. (a) Clearly BZ.'Bu and the red elements of Bu"BK have a swap
sequence in M'; let it be (ei’fi)’ i=1, ..., r. InM, let the sets

derived from these swaps be Ai’ i.e., AO = BE and for i =1, ..., 1,

Ay = Aj_y-e;+f.. The first i swaps, which derive Ay in M, derive
Ai-(BzrnBu) in M. | Thus A 1§ a base of M, and'(ei,fi) is a swap for A, ;.

To see that (ei’fi) is a smallest swap, Corollary 3.1 shows there is a sma11est

-19-

swap (e,f) with e A;_{-B, and f e Bu'“Ai~1‘ Since e is green,
e ¢ Bﬁ"Bu; similarly f « B, - B, Thus (e,f) isa swap for Ay -(BzrwBu)

in M. This implies that (ei’fi) costs no more than (e,f), as desired.

(b) B, and B satisfy the desired condition if Bzrw%ﬁconsists of the
green elements of Bu and the red elements of BK‘ To find an appropriate
Bu for Bz, apply the Augmentation Theorem to BK until a base of Bu is

derived. [

Now we give the divide-and-conquer algorithm. The procedure A(M,q)
below is called with M a matroid whose elements have costs and colors,
and g an integer. It finds a base B with exactly gq red elements and
smallest cost possible. (It halts if no such base exists.)

The heart of A is the recursive procedure S(N,B,R). It is called
with N a matroid, B a base of all green elements, and R a base of all

red elements. S finds a restricted swap sequence for B and R.

-20-

procedure A(M,q);
/\W\‘W

begin

B

procedure S(N,B,R);
,‘.‘Ww»

1. begin iflel = 1 then make (g,h) a swap, where B = {g}, R = {h}

else begin
ARAAT At

end end S;
AAAN g pAP

10.

11.

]

=
im.

I=

Tet R1 be the set of Ll%{Jsma11est red elements, and

R, = R-R

2 1°
let B —Gl+R1 be a smallest base whose red elements
are exactly ng

S(N—RZ/B~Gl,Gl, Rl); comment find the swaps for ng
S(N-Gl/Rl,B —Gl, RZ); comment find the swaps for RZ;

Tet BE be a base with the minimum number of red elements,
and smallest cost possible;

let Bu be a base with the maximum number of red elements,
containing all red elements of Bys containing only
green elements of BE’ and smallest cost possible;

if q < £ or u < q then halt comment no base with g red
At AARAAR A RAAR Attt
elements exists;

S(M—(BKLJBU)/ (Bﬂr}Bu)’BKf'Bu’Bu"BZ);

let W contain the q-4£ smallest swaps found by S;

let G contain the green elements of swaps of W;

Tet R contain the red elements of swaps of W;

B:= BZ-G-FR comment B is the desired base
Ao AAANS A

-21-

Figure 3.2 illustrates the algorithm on Figure 2.1. The initial
call to S finds the base of Figure 3.2 (a), resulting in recursive calls
on the graphs of Figure 3.2 (b). The algorithm eventually finds the swaps
of Figure 2.2.

For the algorithm to work correctly we must break ties in cost
consistently, as in Corollary 3.5. We shall see below (Lemmas 4.1, 6.1)
that in most applications of the algorithm there is sufficient time to sort.
Thus we use the simple rule of Corollary 3.5: Assume the red elements have
been sorted and indexed in nondecreasing order. Then in line 2, choose
thejl}%{fe?ements of R with smallest index. In Tine 10, if there is a
tie for the q-£th smallest swap:, choose the one whose red element has
smaller index for W. (An alternate approach to tie-breaking is given
in Section 4.2).

Theorem 3.2. Procedure A finds a smallest base with exactly g red elements,
if one exists.

Proof. We first check that procedure S is correct: when called with B

a base of all green elements and R a base of all red elements, S finds a
restricted swap sequence. We prove this by induction on |R|. The case

IR| = 1 is handled correctly by line 1.

For |R] > 1, Tines 2-5 find the restricted swap sequence S1 Sy of
Corollary 3.6: The entrance conditions on B and R imply that the set G2 of
Corollary 3.6 is B-—G1 in the algorithm. By induction the recursive
call of Tine 4 constructs Sl’ It is easy to see that the set Gl' of
Corollary 3.6 is G1 in the algorithm. By induction the recursive call
of Tine 5 constructs 52. Thus S works correctly.

Now we show that A is correct. Lemma 3.2 (b) shows bases B, and B,

of lines 6-7 exist. In Tline 9, S finds a restricted swap sequence for

-22.

BE and Bu’ by Lemma 3.2 (a). Line 11 finds the desired base B, by
Corollary 3.5 and the Augmentation Theorem. [J

Now we examine the efficiency of algorithm A. We do not derive
@ general time bound, since more accurate bounds can be given for specific

matroids. We start by discussing three properties of the matroid that are

desirable for an efficient implementation.

First, the divide-and-conquer approach of A depends on the ability
to contract and delete efficiently. Specifically, these operations are
needed in lines 4, 5, and 9.

Second, A needs an efficient algorithm for finding a minimum-cost
base. This algorithm can be used for Tines 3, 6 and 7. For instance
Tine 6 is done as follows: Delete all red elements and find a smallest
base Bl’ Then contract B1 and find a smallest base BZ‘ Finally set
Bﬂ = B1 U Bz. Lines 3 and 7 are done in a similar way. (Another way to
do T1ines 3, 6 and 7, without contracting or deleting, is to modify the
cost function so the desired base has minimum cost).

The third desired property concerns the greedy algorithm. This
algorithm, which finds a smallest base on any matroid, works as follows
[L1,pp.275-77]: It is given a Tist of all elements, sorted so the cost is
nondecreasing. It prunes the Tist to the desired base, by scanning 1f
from beginning to end, deleting any element that forms a circuit with
previous (undeleted) elements of the list. -

Specific matroids often have algorithms that are faster than the
greedy one. These of course are the method of choice for lines 6 and 7.
However the greedy algorithm is particularly suited for Tine 3. Even
though 1ine 3 is repeated many times in the recursion, the sort required
by the greedy algorithm need only be done once. The details are as

follows.

-23-

Procedure S is called with bases B and R given as sorted Tists.

Line 3 finds the desired base by running the greedy algorithm on the list
of elements of R1 followed by the 1ist of elements of B. The sorted lists
for the recursive calls of lines 4 and 5 are easily constructed. Thus in
procedure S, no sorting is done for the greedy algorithm. Instead, linear-
time 1ist manipulation is done inside S, and one sort is done before the
first call to S.

This brings us to the third desirable property of the matroid: The
greedy algorithm runs faster than other minimum-cost base algorithms if the
elements are given in sorted order.

We illustrate the efficiency of algorithm A by deriving a time bound
for graphic matroids. Here the problem is to find a smallest spanning
forest with g red edges.

Graphic matroids have the three properties that allow efficient
implementation of A. First, contraction and deletion are efficient, each
requiring time O(m+n). Here we assume the graph is represented by
adjacency lists. To contract a set of edges, form adjacency lists for
the new graph, using a linear connectivity algorithm [AHU]. Further,
for each edge in the contracted graph, record the edge in M (the original
graph input to A) that it derives from. This is necessary so that when
swaps are formed in line 1 of A, the swaps consist of edges of M.

Note that contractions may introduce parallel edges in the graph.
However it is easy to see that in A, there are at most two parallel edges,
one of each color, between two given vertices. Actually, we can allow
the input graph M to contain such parallel pairs.

Concerning the second property needed to implement A, there are
efficient algorithms for finding a minimum cost spanning forest, in time

0(m log 10g<2+m/n)n) time [CT,T2,Y]. And for the third property, the greedy

algorithm (i.e., Kruskal's algorithm for minimum spanning trees) is even

faster, O(ma (m,n)), if the edges are already sorted [AHU, pp.172-6].
Theorem 3.3. Procedure A finds a smaiiest spanning forest with g red

edges (if one exists) in time O(n1]og1og(2+m/n)n +na(n,n)Togn) and

space O(m+n).

Proof. We first estimate the time for procedure S. S is called with

N a graph consisting of two spanning forests, B, containing all green
edges, and R, containing all red edges; both B and R are given as 1lists
of edges, sorted so cost is nondecreasing. n, the rank of the matroid,
is the number of edges in each of B and R. Line 2 uses 0(n) time.

Line 3, using the greedy algorithm, is O(no (n,n)). The deletions and
contractions in lines 4 and 5 are 0(n). So if t(n) is the time required

by S on a graph of rank n, there are constants Cys Cp > 0 so that

r“
—
=
S
IA

n I .
%nuﬁum-kdtﬂ)+t(%]ﬁ'mrn > 13
t(1) = Cye
It follows by induction that t(n) is O0(na(n,n)logn).

The space needed by S is 0(n). For suppose each recursive call

stores the Tists B and R. If S(n) is the space required on a graph of

rank n, there are constants Cl’ c2 > 0 so that

wm
—
>
SN’
IN

¢y n+~5([2]),for no>1;
Cy-
The desired bound on S follows.
Now suppose A is called on a graph of rank n, with m edges.
Lines 6-7, using an efficient minimum spanning tree algorithm, are

0(mTog 109(Line 9 is O(na (n,n) Togn). (This includes the

2+m/n)n)”
time to sort the edges in the spanning forests BZ"Bu and Bu"Bﬂ')

-25~

Line 10 is 0(n), using a linear selection algorithm [BFPRT,SPP]. The

desired time bound for A follows. The space is obvious. [

Tha n
e)

ext section improves this time bound by eliminating the factor
a(n,n) in the second term. Subsequent sections apply A to other matroids.
The efficiency can be estimated by computations similar to Theorem 3.3.
Sections 4-6 all use algorithms that are variants of A. One simple
variant is to replace procedure S by a procedure that computes a restricted
swap sequence directly from Definition 3.3. This approach, coupled with

data structures and algorithms that capitalize on special features of the

matroid, gives our best algorithms.

-26-

4. Graphic Matroids

This section discusses our problem on graphic matroids. As mentioned
before, the problem here is to find a smallest spanning forest with g red
edges. First we use the "dynamic tree" data structure of Sleator and
Tarjan [ST] to solve the problem in O(nx]ogTog(2+m/n)n~+n logn) time. Then
we discuss a special case of the problem - finding a smallest spanning tree
with a degree constraint. We show this case is linear-time equivalent to

finding an (unconstrained) minimum spanning tree.

4.1. Spanning Forests

This section shows that for graphic matroids a restricted swap
sequence can be rapidly computed from the definition. It also gives a Tower
bound to show that no implementation of the swap sequence approach can be
faster.

The dynamic tree data structure allows a number of operations,

including the following:

find max (v) - return an edge of maximum cost on the tree path from
v to the root;

modify the tree so that v is the root;

D
<
D
=
ot
—
<
~
i

delete the tree edge (v,w);

O
=
—
<
=
~
1

Tink the trees containing v and w by adding edge

-
—-—l‘l
puct
=~
=
o
=
o
I

(v,w), setting the cost of (v,w) to x.

The time for a series of m such operations is O(n+mlogn) [ST].

It is easy to see how to use these operations to compute a restricted
swap sequence. We maintain the tree T so that any red edge in T has a
modified cost equal to S-1, where S is the smallest (original) cost of any
edge. Then to compute the smallest swap for a red edge h = (v,w), make v

the root, by evert(v); find the edge g in the smallest swap (g,h), by

-27-

find max(w); and execute the swap, by cut(g), link(v,w, S-1). It is easy to
see that the n swaps of a restricted swap sequence are found in time
0(nTogn).

Now we sketch a complete algorithm for our intersection problem on
graphic matroids, based on algorithm A. First find a smallest spanning
forest Bﬂ with the minimum number of red edges (line 6 of A). To do this,
use an efficient minimum spanning tree algorithm, with one modification:
When the costs of edges of different colors are compared, always declare the
red edge to be larger. The time is 0(m log log(2+m/n)n). [T2]. Similarly
compute base B (Tine 7). Then form a new graph by contracting B, n B, and
deleting all edges but B£ u Bu’ Find a restricted swap sequence in this
graph, proceeding as described above. Finally as in Tines 10-11, find the

desired base B.

Theorem 4.1. A smallest spanning forest with q red edges can be found, if it

exists, in time Ohn1oglog()n+r11ogn) and space O(m+n). O

24m/n

Now we give Tower bounds that indicate how close to optimal our

algorithm is. For these we define two timing functions: tree(m,n)

is the time required by an optimal algorithm to find a minimum spanning
tree on a graph of m edges and rank n; sort(n) is the time required to

sort n numbers. Note tree and sort are both defined for algorithms on
Random Access Machines. The comparison tree model offers strong evidence
that sort is @ (nTlogn) [F], and also some evidence that tree is

e(m]og]og(2+m/h)n) [cT, T27.
It is clear that any algorithm for a smallest spanning tree with
q red edges requires time Q(tree(m,n)) (Tet all edges be green and take
q=0). Also from the above discussion, our algorithm uses time

O(tree(m,n) + nlog n). So the algorithm is at most 0(n loc¢n)

above optimal.

-28-

We can show that among algorithms using the swap sequence approach,
ours is optimal to within a constant factor. To be precﬁse, say that an algorithm
"uses the swap sequence approach" if, given a graph consisting of two spanning
trees, one greei and one red, it finds the swaps (ei’fi) that constitute
the swap sequence. Note the algorithm need not determine the correct
order of the swaps. For example, procedure A uses the swap sequence

approach.

Lemma 4.1. Any algorithm using the swap sequence approach requires

time Q(sort(n)).

Proof. We give a procedure that sorts n arbitrary numbers. It works by

constructing a rank n+l graph, calling the algorithm, and then processing

the swaps given by the algorithm to find the sorted order. Excluding the
time for the algorithm, the procedure uses 0(n) time. Since

cyn < sort(n) < sort(n-1) + con this suffices to prove the Lemma.

Consider n numbers SEXERR e Without loss of generality assume

all numbers are positive (otherwise increase the numbers by a constant).
Let M be the largest of these numbers plus one. The graph for’xl,...,xn is
shown in Figure 4.1. Formally, the graph has vertices vV, w, and Uy s
T=1, ..., n; green edges (v,ui) costing -X; and red edges (w,ui)
costing Xi’ i=1, ..., n; green edge (v,w) costing O and red edge
(v,w) costing M,
To specify the swap sequence of this graph, let the given numbers
in nondecreasing order be Yisees¥y Then identifying each edge by
its cost, the swap sequence is (O,yl), (—yl,yé),...,(—yn_l,yn),
(-y, M)

-29-

The procedure constructs the graph and calls the algorithm to
find the swaps of the swap sequence. Then it encodes the swaps into

an array S, by setting S(i) = j if ((v,ui),(w,uj)) is a swap, and

VIR
\Wy ULy

J
0), ..., s"0). 1t is easy to see this gives the indices of

is a swap. Finaily it outputs the sequence

~—

S(0) = 3 if {{v,w),

the numbers in sorted order. Furthermore, the time spent before and

after the algorithm is 0(n), as desired. [J

Corollary 4.1. Any algorithm that finds a smallest spanning tree with g

red edges using the swap sequence . approach requires time

Q(tree(m,n) +sort(n)). n

-30-

4.2. Spanning Trees with a Degree Constraint.

Now we turn to a special case of our problem on graphic matroids
that has some practical significance. An important question in network
design is how to link a central computer, having a Timited number of
communication channels, to a collection of periphera]ycomputing sites.
Some versions of this problem, such as the Capacitated Tree Problem,
are NP-complete [P]. Closely related but tractable is the problem of
finding a smallest spanning tree such that a given vertex v has a
specified degree. Polynomial algorithms have been presented for this
problem [GK]; the most efficient uses time O(ny1og1og(2+m/ﬁ)n4-n1og'n)
[Gal]. We show here that the problem is equivalent to finding a minimum
spanning tree. More precisely, we give an algorithm for the problem
that finds one minimum spanning tree and then does 0(n) postprocessing.

An exact statement of the degree-constrained spanning tree
problem is as follows: Given a connected graph with real-valued
edge costs, find a spanning tree with smallest possible cost such that
the degree of a given vertex v is exactly p. We solve the following
problem: Given a connected graph with edge costs and colors, such :
that all green edges are incident to v, find a smallest spanning tree
with q red edges. This problem includes the degree-constrained
spanning tree problem. if we take q = n-p, but it allows red edges
incident to v. (Note that in both problems the restriction to connected

graphs is for convenience only.)

-31-

The problem 1is simplified by making the desired tree unique.
This can be done in a variety of ways. Here we take the desired tree
to be iexicographi

~TT. 5 5 -
aily minimum. That is

O

, assume the edges of the

graph are indexed from 1 to m. For any set of edges, form a vector by

arranging its edge indices in increasing order, i.e., for {eil,eiz,...,eik}
where 11 < 52 < ol < 1k’ form (11, 12,..., 1k). Now among all smallest
spanning trees with q red edges, our algorithm finds the one whose vector
is lexicographically minimum.

Note that this tree is the unique smallest spanning tree with
q red edges with respect to a certain cost function c¢'. To define ¢',
set ¢ ==é% Onin{fc(S)~c(T)[% S and T are sets of edges with
c(S) = c(T)} v {1}), and set c'(ei) = c(ei) - ei. It is easy to check
that for any two sets S, T, ¢ (S) < ¢ (T) if and only if c(S) < ¢(T) or
c(S) = ¢(T) and S is lexicographically smaller than T. This implies the
desired property of c'.

Note also that no two swaps have the same costc's It is easy to
check that c'(ei,ej) < c'(ek,eﬂ) if either c(ei,ej) < c(ek,ez) or
c(ei,ej) = c(ek,eﬂ) and the vector for {ei, ﬁ} is smaller than the

vector for {ej,ek}.

In the lemmas that follow, we assume the cost function ¢ has
been changed to c'. Hence>no two edges or swaps have the same cost.
In the algorithm, we can use ¢ without explicitly calculating it, by
using the characterization of ¢' in terms of ¢ specified above.

We make two more assumptions. First, the green edges form a
spanning tree. Second, some of the red edges form a spanning tree,and

the red edges not in the tree are incident to v.

(Note that by preprocessing as in procedure A, the general case reduces
to the case where the green and red edges are spanning trees. We shall

A
Chat

see our algorithm may introduce extra red edges incident to v.)
Now let Ti’ i=20, ..., nbe the smallest spanning tree with

exactly i red edges. Let T1 = Ti_l-ei-kfi, i=1, ..., n, so that

(ei’fi)’ i=1, ..., n, is the swap sequence. As noted above, Tos ey

and fi are ynique.

Our approach is to start with TO and repeatedly find sets of
edges that are in the first q swaps. We do not find the swaps themselves.

The following simple concept is central in deducing the edges in swaps.

Definition 4.1. For a green edge e = (v,w), Tet u(e) be the smallest
red edge incident to w. Equivalently, (e,u(e)) is the smallest swap for
e and TO.

Note u(e) always exists, since the red edges span. Let
M= {(e,u(e)) | e is green}. The M-swaps.for a graph are shown in

Figure 4.2. The next four lemmas show how the M-swaps allow us to deduce

edges in T..
J q

Lemma 4.2. Suppose (e,u(e)) is not a valid swap for some optimal tree

Ti’ 0 <1i<n. Then u(e) ¢ Ti‘

Proof. Choose i as small as possible such that (e,u(e)) is not valid.
Clearly i > 0. It suffices toprove the lemma for Ti’ since this implies

ule) « Tj for j > 1.

First note that either e ¢ T, or u(e) e T.. For otherwise
e e Ti and u(e) ¢ T.. Since (e,u{e)) is not valid, the cycle C(u(e),Ti)
does not contain e. This implies C(u(e),T,) does not pass through v. But
then C(p(e),Ti) ponsists entirely of red edges, contradicting the fact that

the red edges not incident to v are acyclic.

-33-

Thus without Toss ¢ generality e ¢ T;. Hence T. derives from

T. 1 by doing the smallest swap for e. (e.u(e)) is valid for Tinl’

by definition. Thus Corollary 3.2 implies it is the smallest swap for e,

and u(e) e T.. O

Lemma 4.3. If (e,u(e)) is among the q smallest swaps of M, then

u(e) e Tq.

Proof. Among the first q swaps (ei’fi)’ i=1, ..., q of the swap
sequence, there is one with c(ei,u(ei)) = c(e,u(e)). corollary 3.2
impTlies C(ei’fi) > c(e,u(e)).

Now if (e,u(e)) is a valid swap for Tfal, it is the smallest swap,

and thus (e,u(e)) =(e.,f.). (Recallno twoswaps gave the same cost.) Hence

5
i

u(e) e Tq. Otherwise, if (e,u(e)) is not valid, Lemma 4.2 implies

u(e) e Tq. 0

In Figure 4.2, the lemma implies edges 6 and 8 are in T3, as
shown in Figure 4.3. Notice the lemma does not give q = 3 distinct red
edges in Tq. In general, the Temma need only give [%1 red edges, since

a red edge can be the p - value of two green edges.

Lemma 4.4. If (e,u(e)) is not among the 2q-1 smallest swaps of M,

the T..
nee q

Proof. We argue by contradiction. Suppose e ¢ Tq. Then some swap
(ei’fi)’ i=1, ..., g, in the swap sequence has e. = e. From Corollary
3.2, c(e,u(e)) < C(ei’fi)' Clearly none of the 2g-1 swaps of M that
are strictly smaller than (e,u(e)) is valid for Ti—l‘ These swaps contain
at least q distinct red edges, and Lemma 4.2 shows they are all in

T;_q- Since i -1 < q, this is the desired contradiction. [

-34-

This Lemma is illustrated by edge 2 in Figures 4.2-3.

Lemmas 4.3-4 allow us to deduce edges in Tq. Now we show how

these lemmas can be iterated. Let F be any set of edges in Tq. Form a

wHIT SO

(o

multigraph H as follows. First form G/F. 1In a slight abuse of notation,
let v denote the vertex of G/F that contains the original vertex v of G.

If G/F contains parallel edges, they are incident to v (since two

parallel edges not incident to v give a cycle of red edges in G-v,

a contradiction.) Now for every set of parallel edges (all incident to v)
of the same color, delete all but the edge of smallest cost. The resulting
multigraph s H. (This is illustrated in Figure 4.4 (a).) We show

that Tq corresponds to an optimal tree in H. Let p be the number of red

edges in F.

Lemma 4.5. In the multigraph H, the edges Tq—F form the smallest spanning
tree with g-p red edges.

Proof. First note that all edges of Tq—F are in H, i.e., none are deleted.
For if an edge e ¢ Tq is parallel to an edge f, clearly f £ Tq, since Tq
is acyclic. If f has the same color as e but smaller cost, then the

spanning tree Tq—e+f contradicts the definition of Tq. So e is not deleted.

Now it is clear that Tq-F is a spanning tree of H containing
g-p red edges. Further, it is the smallest such tree. For if S is a
smaller tree, then S+F is a spanning tree of G that contradicts the

definition of Tq. O

Figure 4.4 shows H and T3—F, the smallest spanning tree with one
red edge. Note that in H, the smallest spanning tree with no red edges
is {1,3,9}. This tree corresponds to a spanning tree of G with two red

edges, {1,2,3,6,8,9}, but this is not T, = {1,2,3,6,7,9].

-35-

The last result allows us to iterate Lemmas 4.3-4 until all edges

of Tq are deduced. This is the method followed by procedure B given below.

e

On entry to B, the graph (a muitigraph) consists of two spanning
trees, one green and the other red. A1l green edges are incident to v; red
edges may or may not be incident to v. A spanning tree containing g red

edges 1is to be found. (By assumption, such a tree exists.)

B adds edges to a Tist F until it is the desired tree. q is
maintained as the number of red edges to be added.
procéduré Bs
begin
Syt B

1. while the grabh has more than one vertex do,

begin
P g

2. for each green edge e = (v,w) do
A Ao

u(e):= the smallest red edge incident to w;

3. Tet M = {(e,u(e))|e is a green edgel;
let M1 contain the g smallest swaps of M;
Tet M, contain all but the 2q-1 smallest swaps of M;
4, add the red edges of swaps of M1 to F; decrease g by the number
of edges added;
5. add the green edges of swaps of M2 to F;
6. contract the edges of F;
7. ﬁgx each vertex of the graph w = v Sgu

delete all edges from w to v except the smallest green and
smallest red edge (if it exists);

end end B:

ARt AR,

36

When B is called with g = 3 in Figure 4.2, the first iteration
forms the graph of Figure 4.4 (a); the second iteration adds the edges
~F O

igure 4.4 (b) to F, com

F, completing the tree T

rs-

Note that in lines 2, 3, and 7, ties in cost ¢ are broken
lexicographically, consistent with the cost function ¢ described at
the start of this section.

Also in line 6, it is only necessary to contract the edges added
to F in the current iteration. As usual, we do the contraction by
forming adjacency Tlists for the new mu]figraph. Further, for each edge
in the current graph we record the edge in the original graph
from which it derives. This way we can maintain F as a list of edges

in the original graph.

Lemma_4.6. Suppose B is called with the entry conditions (given above
B) satisfied. Then B adds edges to F that form the smallest spanning

tree with q red edges. B runs in 0(n) time and space.

Proof. We first prove correctness. We show that every time line 1 is
reached, the following conditions hold:

(1) The desired tree consists of F plus the smallest spanning
tree with q red edges in the current graph.

(ii) The green edges form a spanning tree, with each green edge
incident to v.

(ii1) The red edges consist of a spanning tree and zero or more

edges incident to v.

The entry conditions show (i1)-(i41) hold initially. So suppose
lines 2-7 are executed. The edges added to F in 1ines 4-5 are in the

desired tree, by Lemmas 4.3-4. (Note if q = 0, 1ine 5 adds all

-37-

green edges to F, as desired). Lines 6-7 form the graph H of Lemma 4.5.
Hence after 1ine 7, (i) holds. (i1) is obvious. To see (iii), first
note that the red edges not incident to v in the new graph are acyclic
(otherwise the original graph has a red cycle missing v). Further,

the red edges span the new graph. (iii) follows. This completes the
induction.

Finally note that every time through the Toop, if g > 0 the
iteration decreases q; if q = 0, the loop halts. Thus B eventually halts.
Now (i) shows F is as desired.

Now we estimate the efficiency of B. First observe that one
iteration of lines 2-7 takes time linear in the number of edges (in
the current graph). Line 3 uses a Tinear-time selection algorithm
[BFPRT,SPP].

Define the following quantities, for i = 1: q; is the value of g
immediately before the ith jteration of the while Toop; 9 (ri) is the
number of green (red) edges in the graph immediately before the ith

iteration. The following relations hold, for i = 1:

(2) g-H.l = 2q1'1a

(1) holds because the ith iteration adds the red edges of M, to F. (2)
holds because the ith iteration adds the green edges of M, . (3) follows

from inductive assertions (ii) - (iii).
Now the ith iteration uses time O(g1+ri). For i = 1 this is
0(n), by (ii) - (iii). Otherwise (2) - (3) show that for i = 1,ri+1 and

9;41 are both 0(q:). (1) shows q; < ql/zi'l < n/277L. Hence all iterations.:l

-38

after the first take time at most a constant times } —— = 0(n).

This gives the desired time bound.
The space bound is obvious. (Note that we only maintain

adjacency lists for the current graph.) [

The main routine for finding a degree-constrained spanning tree
is similar to procedure A: First find trees Tﬂ and Tu (1ines 6-7 of A).
Then check q for feasibility (1ine 8). If q is feasible, decrease its
value by £, and place the £ red edges of TK in F. Then delete all edges
besides Tﬂ u Tu’ and contract Tﬂ n Tu. After this step the green edges

and the red edges both are spanning trees. Finally call B.

Theorem 4.2. The above algorithm finds a smallest spanning tree with

a degree constraint, in time O(mlog log n) and space 0(m).
%9 (24n/n)

Z+m/n
Proof.'féand*@}are foundby using a minimum spanning tree algorithm on
the graph with edge costs appropriately modified. The time for this

is O(n11og1og()n3 [CT, Y, T2]. The new graph can be constructed

2+m/n
from the 0(n) edges in TZ U Tu intime 0(n). B is 0(n). The time

bound follows. 0O

Actually the algorithm can be implemented with only one call
to a general minimum spanning tree algorithm. First find Tu’ the
spanning tree with the greatest number of red edges and smallest cost

possible. Use the general algorithm for this. Then find T,, the

/K!
spanning tree with the fewest number of red edges, containing all

green edges of Tu’ only red edges of Tu’ and smallest cost possible.
Note that after the cost function has been appropriately modified, this

can be done by finding a minimum spanning tree on a graph consisting

-30-

of a spanning tree Tu and edges incident to one vertex v. This
requires time O(n), by an algorithm originally due to Spira and Pan:
d

Tines 2-5 replace

by one step that adds the
smallest edge incident to each vertex in the graph to F. (Also, ignore
colors in line 7.) Details are in [SP, p. 377]. This gives the

following result:

Corollary 4.2. A smallest spanning tree with a degree constraint can

be constructed by modifying costs (in time O(m));'%inding one minimum

spanning tree, and doing 0(n) post-processing. [

Note that finding a smallest spanning tree with a degree constraint
requires at Teast the time to find a minimum spanning tree. (We can find
a minimum spannfng ree for a graph by adding a vertex v with one edge,
and finding a smallest spanning tree with one edge incident to v.)

Hence the two problems are linear-time equivalent.

—-A -

5. Matching Matroids.

This section discusses our intersection problem on several types
f matching matroias.
O(m + n log n) algorithm is given for simple scheduling matroids. An
O(mloan + n2) algorithm is given for general scheduling matroids. Finally,
the time for general transversal and matching matroids is shown to be

(mlogm + ne).

We begin with the definitions. A matching matroid is derived

from a graph G and a subset of the vertices J. The elements of the
matroid are the vertices of J. The independent sets are subsets of J

that can be covered by a matching of G. A transversal matroid is a

matching matroid where G is bipartite and J is one of the two vertex
sets of G (i.e., each edge goes from J to J).
Two special types of transversal matroids are of particular

interest. A (general) scheduling matroid derives from a convex bipartite

graph. More precisely, the vertices of J can be indexed from 1 to |J| so
that each vertex of J is adjacent to consecutive vertices a, atl, ..., b
of J (and no others). We think of the vertices of J as jobs and the
ith yertex of T as the time period from i-1 to i. Thus a scheduling
matroid corresponds to the following situation: A processor runs for

|J| units of time. There are m = |J| jobs, each requiring one unit of
processing time. Each job j has a refease time rj and a deadline dj’
both integers, 0 < ry < dj < |Jl. If job j is chosen for execution,

it must be started no earlier than time rj and finished no Tlater than

dj’ In this matroid a base is a set of jobs of maximum cardinality

that can be executed on the processor so that each job meets its

constraints. A schedule is a base, together with a specification of

~47 -

when each job gets executed.

A simple scheduling matroid [L1 pp.265-6, 278] corresponds to a

1,2,...,b, for some b. In the scheduling 1ntérpretation, each release
time is 0, so release times can be ignored.

In the following discussion we use interval notation in two
ways. The first is for intervals of time. Suppose a processor executes
n unit-length jobs, one after another. We say that the ith job is

executed in the time interval [i-1,1i). (Thus the ith

job is no longer
executing at time instant i). The second use employs interval notation
for sets of integers. Thus if v and d are integers, [r,d) denotes the
integers in the set of real numbers usually denoted [r,d), i.e., [r,d) =

{r,...,d-1}. The context will always make our use of interval notation

unambiguous.

5.1. Simple Scheduling Matroids,

This section discusses the following scheduling problem. Given
is a set of m unit-length jobs. Each job has an integer deadline, a
real—va]ued»profft and a job class G or R. The profit for a
job is earned if and only if it is completely executed by its deadiine.
Find a maximum profit schedule containing exactly g jobs in class R.
This problem is essentially equivalent to our intersection problem
on simple scheduling matroids. Note that we will give an algorithm that
finds a schedule, not just an (unordered) base. Also,as usual,without
Toss of generality we find a minimum (not maximum) cost base (schedule).
An example problem fé shown in Figure 5.1. Jobs are identified by their
cost and Tisted underneath their deadline.

We represent the matroid by the following data structure. For

-42-

each integer time t between 1 and the largest deadline, there is a list
Dt = {j]Jjob J has dj = t}. The Tist heads are in an array so that given
t, the first job in Dt can be found in 0(1) time. It is easy to construct
this data structure in linear time from any reasonable specification of
the matroid.

We start with a simple normalization: We can always assume that

the processor runs from time O to n, and exactly n jobs are executed.

Lemma 5.1. Let M be a simple scheduling matroid. Then there is a simple
scheduling matroid M', where M' has rank n = max{djlj is a job of M1,
m' < (n')z, and for some set of jobs I of M, I plus a base of M gives

a base of M (i.e., M =M/I). Further if the jobs have costs, then I

plus a minimum cost base of M' gives a minimum cost base of M. M'

can be found in time 0(m).

Proof. First we prune M to a matroid M' with all the desired properties
except the upper bound on m. To do this, initialize M' toMand I to .
" Then set n' = max{djjj is a job of M'}. Now Tet Ji = {j|3 is a job of
M and dj > t}. Suppose there is a time t such that]Jtl =n - t. Then
choose t as large as possible; remove the jobs of Jt from m' and add them
to I; then repeat the process (start by redefining n'). Otherwise if
there is no time t, halt. |

The correctness of this procedure follows from the observation that
the deleted sets Jt are included in any base of M; also, the final
matroid M' has rank n . It is easy to implement this procedure in linear
time. (Note that if we seek a schedule rather than just a base, the
assignment of I to time periods can also be recorded in linear time).

In the second modification to M', for each d, 1 < d < n', remove

-43..

all but d smallest jobs that have deadline d. (If fewer than d jobs have
deadline d, do not remove any. If jobs do not have costs, the choice
of jobs to remove is arbitrary). It is easy to see that this does not

change the minimum cost of a base, and achieves the bound m' < n'(n'+1) .

Further this can be done in the required time by using a Tinear-time

selection algorithm [BFPRT,SPP]. 0

For the rest of the discussion we assume the matroid has been
preprocessed so M has the properties given above for M'.

Now we discuss finding a minimum cost schedule. The greedy
algorithm can be implemented initime O(mTogm + n), or if the jobs are
already sorted, O(ma (m,n)+n). This is a simple exercise using the
UNION-FIND data structure [HS, pp.161-8].

The time bound for unsorted jobs is improved to O(m+n Togn) by
the following algorithm. . Recall Dt = {j[dj= t}. The a1gorithm also

uses A, a priority queue of jobs.

procedure C;
PPN VA A s e

begin

T T W
1. A: = @,
2. for t: =ntol by -1 do

sn Aas A

begin

3. A: = Avu Dt;
4, remove the smallest job from A (if one exists), and schedule

it in time interval [t-1,t);

end end C;
AN fASA

~44-

Lemma 5.2. Procedure C finds a minimum cost schedule for a simple

scheduling matroid in time O(m + n Togn) and space 0(m).

.

Proof. We start by showing that if j is a smailest job with deadiine

n, there is a minimum schedee with j executed in [n-1,n). Suppose a "
minimum cost schedule executes jobs kl""kn’ in that order. If

Jjé {kl,...,kn}, then the schedule kl""’kn—l,j has the desired property
(since c(j) < c(kn)). Otherwise if j = ki’ the schedule

kl""’ki-l’K1+1""’kn-1’J has the desired propertyf

Now it 1s eésy to prove by induction on n that C finds a minimum |
cost schedule. To verify’the time bound for C, implement A and Dt’
t=1,...,n, as mergeable heaps, e.g., 2-3 trees [AHU,pp.152-55]. Then
the operations of union and removing the smallest are 0(Togm). The

time bound follows. O

It now follows that procedure A runs in time O(m + na (n,n) Togn)
on‘simp1e scheduling matroids. The analysis is similar to that for
spanning trees. Note that contraction is easy to:.do on a simple
scheduling matroid: Suppose a set containing k_i jobs of deadline i,

i=1,...,n, is to be contracted. Then a job whose original deadline

2 k_i -
=1

is d gets a new deadline d -

Now we give an algorithm for the intersection problem on simple
scheduling matroids that runs in O(m + nTlogn) time. It works by
computing a restricted swap sequence from the definition. We start.
by characterizing the valid swaps for a base B. For time t =1,...,n,
let bt be the number of jobs in B with deadline. at most t. The slack in B
at time t is t—bt; B is tight at time t if t = b,. (Thus B is a base if
and only if it haé hon—negative slack at times 1,...,n-1 and is tight

at n.)

-45-

Lemma 5.3. Let B be a base, with jobs g € B, h ¢ B. Choose t as small
as possible so that t = dh and B is tight at t. Then B-g+h is a hase if and
only if dg < t.
Proof. Let B' = B-g+h. B' is a base if and only if for s =1, ...,n,
b; < s. We consider three cases.
If dg > t, then b; = bt +1=t+1, so B' is not a base. If

S S

suppose dh < dg <t., Ifs«< dh or s = dg, then bS = bs' If dh

then b; = bs+1; the choice of t shows b;s s. Hence B' is a base. [

dg < dh’ then for any s, s = 1,...,n, b’ < b , so B is a base. Finally

<s <d._,
g

The Lemma implies that the following procedure can be used to

find the best swap (g,h) for a base B and red job h.

procedure D;

begin

P e
1. find the smallest time t = dh where B is tight;
2. find the largest green job g e B with dg <ty
3. make (g,h) a swap; B:=B-g+h;

end D;
oAl

Note that time t exists, since B is a base. The given job g exists
if there is any swap for h, and (g,h) is a largest swap, by the Lemma.

We will find a restricted swap sequence by iterating D. We use
the following data structure for the base B: Take any balanced tree with
n leaves, e.g., a complete binary tree. Number the Teaves from left to
right as 1,...,n. The Teaves descending from a node s form an interval of
integers [K,r]. Node s represents the corresponding time interVaT, [e-1,r).

Node s has three data fields: G(s) is the largest green job inB with a deadline

—46~

jn [Z,r]. S(s) is an integer used to compute slacks; more precisely
for any integer time t, if P is the path from leaf t to the root, then
the slack of B at t is J S(u). M(s) is the smallest sum } S(u),
ueP ueP

where P is a path from s to a leaf in [£,r]. (Thus for instance the root
has M-value 0.)

Figure 5.2 illustrates this data structure for Figure 5.1. Each .
node s is labelled with the values G(s), S(s), M(s). Figure 5.2(a)
shows the data structure for the initial base of all green jobs; Figure
5.2(b) shows it after the first swap (7,1) has been made.

Besides the balanced tree, the green jobs of B are organized in

lists: For each 1ntegér time t, 1 <t < n, there is a list L(t) of all

the green jobs in B with deadline t; L(t) is sorted so that cost is nonincreasing.

Using this data structure, it is easy tobimp1ement D in time
0(logn) [AHU,pp.145-152]. For example, the update to B in line 3 is
done as follows:

comment set B to B-g+h;
AU e
3.1 vremove g from L(dg);
iﬁ.L(dg)zﬂ then G(dg):= the first job in L(dg)
else G(d.):=0 comment 0 is a dummy job with cost - o
Attt g Pl
3.2 increase S(dg) and M(dg) by 13
for each node s on the path from leaf d to the root ggv
begin

if s has a right brother r then increase S(r) and M(r) by 1;
A A

;

if s = dg then begin

Ao

Tet G(s) be the job with the largest cost in {G(s')]|s'is
son of s};

M(s):= S(s) + min{M(s')|s' is a son of s};

end end;
P . e

-4~

3.3 decrease S(dh) and M(dh) by 13
for each node s on the path from leaf d,_ to the root do
o h A

begin

ANARAAN

if s has a right brother r then decrease s(r) and M(r) by 1;
AR, APt
M(s) := S(s) + min{M(sl)lsI is a son of sl

end;
At

The remaining details of procedure D are left to the reader. Now
suppose we are given bases B and R of all green and all red jobs
respectively. A restricted swap sequence for B and R can be found by
sorting the jobs in B and in R, constructing the data structure for B,

and iterating procedure D n times. This gives the following result.

Lemma 5.4. A restricted swap sequence for two bases can be found in

time 0(nTogn) and space 0(n). O

The complete algorithm for our 1nterséction problem follows
procedure A: First find bases BK and Bu (lines 6-7). Then check g for
feasibility (line 8). Find a restricted swap sequence as in Tine 9, only
using the procedure given above. As in lines 10-11, form the desired
base Bbymaking the q smallest swaps. Finally construct a schedule for B
in Tinear time, as follows: Schedule jobs of B from the first time sTot
to the last, always choosing the job with smallest deadline to be executed

next.

Theorem 5.1. For simple scheduling matroids, a smallest schedule with

q red jobs can be found in time O(m+nlogn) and space 0(m). [

Note that our time bound is the same as the best known method for

finding a minimum cost base. (The time needed to do the latter is

clearly a Tower bound on the time for our intersection problem.) We

-48~

can also show that our algorithm is the best possible implementation of

the swap sequence approach. This is done below in Corollary 6.1.

5.2. General Scheduling Matroids.

Now we treat the general scheduling problem, where each job j
has a release time ry and a deadline dj' Again we seek a smallest schedule
with g red jobs.

We start by normalizing the matroid.

Lemma 5.5. Let M be a general scheduling matroid. Then there is a
general scheduling matroid M', where M' has rank n' = max{djlj is a job

3, and a base of M' is a base of M. If the jobs have

of M‘}, m < (n')
costs, a minimum cost base of M' is minimum for M. M' can be found in

time 0(m).

Proof. First we find M' satisfying all conditions except the upper bound
onm . Initialize M to M. Without Toss of generality, for n' =
max{dj[j is a job of M'}, n > m'; also some job has release time 0.

Now do the following:

i

1. let £ = min{t|t is an integer and t > |{j|jobJ has rj<'t}l};

2. let h

1

min{t|t is an integer, t = £-1 and some job j has rj==t}
uin'};
3. contract the time interval [£-1,h), i.e., set all deadlines that are
in [£-1,h) to £-1, and decrease all release times and deadlines that

are h or more by h-£+1;

Note that inTine 1 £1is well-defined since the time n' is in the set.
In Tine 2, h = £, since line 1 implies no job has release time £ - 1.

Thus line 3 contracts a nonempty time interval.

~49-

Now we show that any schedule can be transformed so that it does not

use the time slots that are contracted in line 3. Given a schedule S

for M, Tet S' be a schedule executing the same jobs as S but as early

as possible; more precisely, if [ti‘l’ti)’ i=1, ..., k are the times

when jobs are executed and t1 < t2...<t

(> then the vector (tl’tZ"”’tk)

is lexicographically minimum. Let u be the highest time, u < £, where

[u-1,u)is idleinS'. Note u exists by line 1. We claim u = £.

To see this,’suppose on the contrary that u < £. The £-u jobs

that S' schedules in [u,£) have release times at least u (else s'

could be improved). Line 1 implies there are at Teast u jobs with

release times less than u. This gives at least (£-u) + u = £ jobs with

release times less than £, a contradiction.

Hence u = £. This implies that no job with release time Tess

than £ is scheduled after time £ (otherwise S' can be improved). Now it

is easy to see from line 2 that no job is scheduled in [£-1,h). Thus

the contraction in line 3 aoes mot change the bases of the matroid.

Now to insure that n' < m', repeat the above three steps until

the desired condition holds. (Note that each repetition decreases the

' 3
value n). However in line 1, always consider only new jobs, i.e.,

if k is the previoué value £-1, the new value of £ is

L=

min{t|t is an integer and t-k>|{job j has ksrj<t}|},

The above procedure can be implemented in time O(m), if the jobs

are sorted by release time. (In line 3, it is only necessary to modify

a job's release time and deadline once). Further, we can keep track of

the modifications, so that a schedule in M' can be converted to a schedule

in M.

Finally we modify M' to achieve the upper bound on m'. For every

=50-

nonempty set of the form {j[rsrj<djsd}, delete all but the d-r smallest
jobs from M Using bucket sorts and linear-time selection, this step is

O(m). O

In the remainder of the discussion we assume M has been modified as
in the Lemma.

The greedy algorithm on scheduling matroids can be implemented in
time O(mlog m + nz). Lipski and Preparata [LP] obtain a bound of O(mn)
using matchings and augmenting paths. Their method can be modified to
achieve the above time bound. Here we give a method based on Glover's
algorithm for matching convex graphs [G1], also called the earliest deadline
rule for scheduling [LF,J].

The earliest deadline rule finds a schedule for a given set of jobs

if one exists [LF,J]. Call a job j available for time t if it is not

scheduled in [0,t-1) and rj <t < dj. The earliest deadline rule is as
follows:
for t: =1 to n do
Aasn ARA aAAN
ljrsome job is available for t then
in [t-1,t), schedule a job that is available for t and
has smallest possible deadline;

We call any schedule that can be constructed by this rule an earliest

deadline schedule. By convention, during any time interval [t-1,t) that

the machine is idle we say it is executing a-dummy job 0, where dO =n + 1.
The greedy algorithm works by iterating the following step: Given

an unscheduled job x and scheduled jobs S, if S + x can be scheduled

then add x to S. (The jobs x are considered in order of nondecreasing

cost).

-57 -

We maintain an earliest deadline schedule for S. To gain efficiency,
we delete certain "tight" time intervals, where the schedule cannot change.
A time interval [r,d) is tight if d-r = [{j|j is currently scheduled and
rsfjsdjsd}l. The following data structure keeps track of time intervals
[t-1,t) that are not in tight intervals and hence not deleted.

The time intervals [t-1,t) that are not in tight intervals, where
t is an integer, 0 <t < n + 1, are maintained in a doubly-Tinked 1ist T
in ascending order. A node p on T has three fields. TIME(p) is the
value t for interval [t-1,t), SUCC(p) is a pointer to the next node on T,
if it exists, and PRED(p) is a pointer to the preceding node,if it exists.
Thus TIME(p) < TIME(SUCC(p)) if SUCC(p) exists. (Note that the first and
last nodes of T, with TIME fields 0 and n + 1, are dummies).

In addition, the times 0, ..., n are partitioned into disjoint

sets. For each time t on T, there is a set S, = {s|Os<s<n, and t is the

t
Towest time in T with s<t}. These sets are manipulated by UNION and FIND

instructions [AHU]. UNION(SS,St) merges set S, into S., thereby eliminating

S_. FIND(s) has a value that is a pointer to a node of T: if s ¢ S,, then

S
TIME(FIND(s)) = t.

t’

The algorithm also uses a list C of changes to the current schedule.
The algorithm attempts to construct an earliest deadline schedule for
S + x. A1l changes needed in the current schedule are recorded in C.
If S + x can be scheduled, then the changes of C are made: otherwise they

are not made.

10.
11.
12.
13.

-5

procedure E; comment given is an earliest deadline schedule for a

VAT A R B e AR i A A
set of jobs, and an unscheduled job x. E adds x to the
earliest deadline schedule, if this is possible. Otherwise
it may delete a tight interval from T;

begin
A AN

1]

C: = @5 uz = x3p: = FIND(r)3 t: = r: = TIME(p);

N

while u =2 0 and t < d_ do
Attt Ps A U asn
begin.
let j be the job scheduled in [t-1,t) comment j may be 0;
li,du < dj then
begin in 1ist C, schedule u in [t-1,t); u: = j end;
At

AR

p: = SUCC(p); t: = TIME(p);

end;

w
if u = 0 then update the schedule by making the changes in C
st P e

else begin
AP AAA Qi o
q: = PRED(p); s: = TIME(q); r: = r-1,

while s > r do
Attt AR

begin
P
Tet j be the job scheduled in [s-1,s);
if r. <r thenr: =r.;
UNION(s,t);
q: = PRED(q); s: = TIME(q);
end end end E;

P NP Y L S

-53—

Lemma 5.6. The greedy algorithm, using procedure E, finds a minimum cost

. . 2
schedule in time O(mlogm + nz) and space 0(m). (The time is O(ma(m,n) +n")

if the jobs are given in sorted order).

Proof. Assume that x is the next job to be considered by the greedy algorithm
and that an earliest deadline schedule has been constructed for the correct

subset of jobs larger than x. Further, assume that 1ist T and sets St
are correct. This means that if s and t are consecutive times on T, then

integers [s,t) form a set S, and [s,t-1) is a tight interval. We show that

t
E processes x correctly, i.e., an earliest deadline schedule for S + x
is constructed if possible; otherwise T and St are updated correctly.
Clearly this suffices’to show that the greedy algorithm 1tsé1f wotks correctly.
We begin by analyzing the Toop of lines 1-6. Let C be the schedule
derived from the current one by making the changes in 1ist C. We show by
induction that each time line 2 is reached, one of the following
alternatives holds:
(i) u=0, inwhich case Cisan earliest deadline schedule for S+ x.
(i1) t:>du, in whichcase it is impossible to schedule all jobs of S +x.
(iii) u=0 a?d t:sdu, in which case C is an earliest deadline
schedule for S + x-over the time interval [0,t-1); the jobs remaining to
be scheduled in [t-1,n) are u plus the jobs in [t-1,n) in the_current
schedule.
For the base case, u = x. On the time interval [0,r) it is clear
that ¢ is an earliest deadline schedule for S + x. Thus if t = ret 1, then
alternative (iii) holds at line 2. Otherwise suppose [rx,rx+1) is in a
tight interval [s,t-1) (for some s). If t > dx, then x and all jobs in
[s,t-1) have deadline < t-1. Thus the earliest deadline rule does not

schedule one of these jobs, and (ii) holds. Otherwise if t < dx’ then

-54-

since all jobs currently in [s,t-1) have deadline less than dx’ (iii) holds.
For the inductive step, assume (iii) holds when line 2 1is reached.

We show that one of (i)-(iii) holds after lines 3-6 are executed. It is clear

that Tines 3-5 update C and u correctly for the interval [0,t). Now if

u =0, (i) holds. Otherwise, reasoning as above, (ii) holds if t > du

and (iii) holds if t < du‘ This completes the induction.

It is easy to see that E is correct if the loop halts with u = 0.
Otherwise, if u = 0, from (ii) we need only show that lines 8-13 update the
schedule correctly.

Let o be the value of r computed in Tine 8. Consider the jobs
of the original schedule in [ro,t—l). These jobs all have deadline
<t - 1. For let the tight interval ehding at t - 1, if any, be [s,t-1)
(for some s). Jobs in [s, t-1) have deadline < t-1. Lines 4-5 show
that jobs in the remainder of [ro,t-l) have deadline <d <t.

Take A‘ﬁ t - 1 as high as possible such that a job wfth dead]ihe >t -1
(or job 0) is scheduled in [4-1,5). (If no such 4 exists, take s = 0.)
The earliest deadline rule implies all jobs in [5,t-1) have release times
> 4. Hence [4,t-1) is tight. The preceding paragraph shows 4 < o Now
take n as large as @ossib]e such that

o= min{rO} u {rjl job j is scheduled in [n,t-1)}.
Clearly # = 5 and [#,t-1) is tight. Further, if [x',t') is tight, with
rl<ns<t' <t-1, then [x', t-1) is tight.

It is an easy matter to check that the Toop of lines 9-13 halts with
r = n, and further that it updates T and the sets St for the tight interval
[nﬁ, t-1). Thus the greedy a1gorithm works cbrrectiy.

Now we estimate the time for the greedy algorithm. The initial sort
of m jobs by cost is O(mTogm). The set merging instructions do m
FINDs (Tine 1) and < n UNIONs (Tine 12)5 thus the time for set merging

, o L)
is 0(ma (m,n)). We show that the remainder of the processing 15 o(n").

-55-

Exactly n jobs get scheduled. For each of these jobs, Tines 1-7 are
executed in 0(n) time. Thus O(nz) time is spent on the scheduled jobs.
Now we show that 0(m) time is‘spent on the jobs x that do not get scheduled.
For these jobs, it is clear from previous remarks that each of the times
t processed in lines 2-6 it also processed (as s) in lines 9-13. We
charge an iteration of Tines 9-13 to the time processed, s. Since there
is at most one iteration for a given s, the charge to a given s is 0(1).
The desired bound follows. [J

The techniques used in E can be applied to find a restricted swap
sequence. Consider a given earliest deadline schedule and an unscheduled
red job h. To find a largest swap (g,h) for h, select d as small as
possible and r as large as possible so

d

1

max{dh} u {dj| j is scheduled in [rh,d)},

1]

r=min{r} v {rjlj is scheduled in [r,d)}.
We claim that g is a largest green job scheduled in [r,d).

To see this, first note that [r,d) is tight, as in Lemma 5.6. Thus
any valid swap has its green job in [r,d). Next note that swap (g,h) is
valid. For if g is 1in [rh,d), an earliest deadline schedule with g
swapped for h is constructed by a procedure similar to E (&s usual assume
we start with an earliest deadline schedule):

1. replace g by the 0 job;
2. S = rys us s h:
3. while u = 0do

4, let j be the first job scheduled in [s,d) with d.>du; let j be
scheduled in [t-1,t); J

5. in [t-1,t) schedule u; u: = j; s: = t;

end;
W

-56-—

Otherwise if g is in [r,rh), the following algorithm constructs an earliest

deadline schedule with g swapped for h:

1 Tl o bm mmbead. T d 2 A 1 &)
L. 18T § D€ SChEaui1ed in [S-1,5)3
2. whiles <r_ do

AR ARG h A~

begin
3. let j be the first job scheduled in [s,d) with rjss—lg let j be
scheduled in [t-1,t);

4, in [s-1,s) schedule j; s: = t;

5. add h to the schedule, using lines 2-5 of the previous algorithm;

Thus to compute a restricted swap sequence for red jobs hl’ cees
hn and base HO’ iterate the following steps: For hi’ compute r and d as
above; find the largest green job g; in [r,d); find an earliest deadline
schedule for H,, as above. Since one iteration is 0(n), the time for the
restricted swap sequence 1is O(nz). |
Now we sketch the complete algorithm for our intersection problem.
We modify procedure A. First find a smallest base BZ with the minimum
number of red jobs (Tine 6 of A). To do this use the greedy algorithm,
with all green jobs considered before any red job. Similarly compute
Bu (Tine 7). The test of line 8 isas inA. The restricted swap sequence
is found as above. Then, as in Tines 10-11, the desired base B is found.
Finally, the desired schedule is formed. This last step can be done using
the earliest deadline rule in time 0(nlog logn) [EKZ] or more efficiently
in time 0(na (n,n))[LP].
Theorem 5.2. For general scheduling matroids, a smallest schedule with g

red jobs can be found in time 0(m log n+—n2) and space 0(m). [

-57—

Although we cannot prove a matching Tower bound for this problem,

note that the time is the same as for the greedy algorithm.

5.3, Matchin

L (ST R

g and Transversal Matroids.

We close Section 5 by briefly examining the general case of matching
and transversal matroids. First weneed some notation. Recall thatn denotes the
number of vertices in a base; m denotes the number of vertices in the set
J of vertices in the matroid. We need one more parameter to specify the
size of the matroid: e denotes the number of edges in the graph.

The greedy algorithm on matching matroids can be implemented in
time O(mTlogm+ne): The time to sort the vertices is O(mlogm). To
test if a vertex can be added to an independent set, we use the method
of augmenting paths. Using the techniques of [Ga2,KM] for cardinality
matching, the test can be done in time O(e). As in the general scheduling
algorithm, we delete vertices that are reached in‘unsuccessfuT tests
(these are "Hungarian vertices" [Ga2]). This makes the unsuccessful tests
use a total of O(m+e) time, while the successful ones use O(ne). The
time bound follows.

Again using augmenting paths, a restricted swap sequence can be
computed from the definition, in time O(ne). This completes a sketch of
the following result:

Theorem 5.3. For matching and transversal matroids, a smallest base with

q red elements can be found in time O(mTogm+ne) and space O(mte). [

As usual our time bound matches the best known bound for finding

a minimum cost base.

-58—

6. Partition Matroids.

This section discusses our intersection problem on partition matroids.
Firstwe prove an Q(nlogn) lower bhound for the swap sequence approach. This
bound extends to scheduling and matching matroids. Then we give an 0(m)
algorithm for partition matroids.

We start by defining the matroids. A partition matroid derives from

a set E of m elements that is partitioned into disjoint subsets
Ei’ i=1, ..., b, and positive integers Nys i=1, ..., b. The elements of
the matroid are those of E; a base is a set containing exactly ns elements
of E;, i=1, ..., b. [L1,p. 272] If b = 1, the matroid is called uniform.
The greedy algorithm on partition matroids finds a minimum cost base
in time 0(mTogm). This is easily improved to O(m) by using a Tinear-
time selection algorithm.
A restricted swap sequence can be constructed from the definition
in time 0(nTlogn). Thus fo110w1ng procedure A our intersection problem
can be solved in time O(m+n logn). Before improving this, we show that
it is the best one can db using the swap sequence approach. Recall from
Section 4 that sort (n) is the time needed for an algorithm to sort n
numbers. Now consider an algorithm on partition matroids. Say it "uses
the swap sequence approach" if, given a uniform matroid consisting of
two bases, one green and the other red, the algorithm finds the swaps
in a swap sequence for the two bases. (As usual, the algorithm need

not find the order of the swaps.)

Lemma 6.1. Any algorithm on partition matroids that uses the swap
sequence approach requires time Q(sort (n)).
Proof. As in Lemma 4.1, it suffices to give a procedure that sorts n

numbers by calling the algorithm and doing 0(n) extra processing.

~50-
Consider n arbitrary numbers Xpo eees Xpo The corresponding uniform

matroid consists of n green elements costing 1, ..., n and n red elements

castina x. . . ~y . If the numhers in nondecreasina order are v v
costing Xy, ..., X . 1T the numbers 1n nondecreasing order are yi, ..., Y .

it is easy to see that the swap sequence is (n,yl), (n—l,yz), ces (1,yn).

The procedure forms the matroid and calls the algorithm. Then it
computes the array S, where S(i) is the element paired with i as a swap.
Last, it outputs S(n), S(n-1), ..., S(1) as the sorted order.

Only 0(n) time before and after the algorithm is used. 0

Note that a uniform matroid is a special case of a simple scheduling
matroid (where all jobs have deadline n). Thus for the obvious definition
of "swap sequence approach" the following corollary holds:

Corollary 6.1. Any algorithm on simple scheduling matroids that uses the

swap sequence approach requires time Q(sort(n)). The same holds for
general scheduling, transversal and matching matroids.
Now we present the linear algorithm. It is a straightforward adaptation

th/sma11est element of a

of an efficient algorithm for selecting a g
multiset X + Y. Here X and Y are sets of n real numbers and X + Y is
the multiset {x+y|xeX,yeY}. We use the selection algorithm of
Jefferson, Shamos and Tarjan [S,pp.256-8],which runs in time 0(n logn).
The well-known algorithm of [JM] also uses time O(n Togn) but apparently

does not adapt to our problem.

In a partition matroid it is easy to describe a swap sequence for

B and R: Choose some consistent rule to break ties in cost. Then the

swaps in a swap sequence are Lﬁ{(ej,fj)llsjsni, e; is the jth

Es

largest

green element of Ej n B and fj is the jth smallest red element of Ei - B,
if both exist}. A swap sequence is formed by sorting this set in order

of nondecreasing cost.

-60—

To get a Tinear algorithm we cannot find the swaps individually.
Instead we repeatedly select a small number of swaps, all known to be
either among the g smallest swaps or not among them. In the first case
the swaps are executed; in the second case the elements of the swaps
are deleted. More precisely, if g slgj, we find swaps that are larger
than the median (i.e., the l%jth smallest swap); these swaps are deleted.
If g >{§} we find swaps that are smaller than the median and execute them.

Nowkwe sketch the complete algorithm. It follows 1ines 6-9 of
procedure A. First we find BK} a smallest base with as few red elements
as possible. Note that for each block Ei’ BK n E1= consists of the n,
smallest green elements, or if only h < n, green elements exist, all
green elements plus the ni—h smallest red elements. We can find B£ in.
0(m) time wusing linear-time selection. The desired base B is initialized
to Bz,

Similarly we find B in O(m) time and check q for feasibility.

Then we pass to the matroid M - (ﬁiﬁﬁuﬁaﬁ/(BﬁnBu): Elements not in

BK u Bu are deleted. An element e ¢ BK n Bu is contracted as follows.

e is de1eted from the matroid; n and Nis where ec Eﬁ, are decreased ‘
by 1; if e is red, g is decreased by 1. After the matroid is modified,
there are 2n elements, forming bases of all green and all red elements.

The Tast step is finding the g smallest swaps (in the reduced matroid),
and executing them on B. This gives the desired base. The procedure
for this, outlined above, is now stated in precise form. For conciseness,
we treat the two cases q < ng and q > [g] together: The changes for the
second case are always given in parentheses, as in q < (>) [%J . In the

h

algorithm below, recall that for a block Ei’ the jt smallest swap

-61-

th

consists of the j~ Targest green element of Ei n BK and the jth smallest

red element of Ei—Bﬂ.

procedure F;
ANAAAAAAAA
begin
A A
1. while g > 0 do_
begin
A Al botertr
2. let g < (>) g— ;
3. for each nonempty block 51£¥L
beg1n

4. [4 'I H’J vl

5, let (e..f.) be the k; th smalilest (largest) swap for E.s

6. let (ep,fp) be the smallest (Tlargest) swap such that for

- I3 ni.
= {1lc(e1,fi) < (2) c(e } 121 k. > L?J .
7. for each nonempty block E, do
Sren, T ana~
6 1L clegsfy) = (<) cle.fy) then
begin
M/W
9. Tet {(ej,fj)[je J} be the h, largest (smallest) swaps for E:s
10. for j ¢ J do delete e, and f. from E.:
AsARA A, J J 1
. ni
11. if q> L§J then
begin
PP

for j e JdoB: =B -e. + f.;
AQMJ€ At J J

q:=q-h1.;
end;
e

n = n.-h n: = n-h

end end end F;
Ao A

P e

-62-

To insure the algorithm works correctly we must break ties
consistently. Assume all elements have been indexed. If two swaps
have equal cost, we say the one whose red element has smaller index is

smaller.

Theorem 6.1. For partition matroids, a smallest base with g red elements

can be found in 0(m) time and space.

Proof. From the remarks above, it suffices to show that procedure F is
correct and uses 0(n) time and space.

We start with correctness First note that in line 6, the swap

(ep,fp) exists, since Z ks = {] [Zj

i=

p P
is > Lé%j , by Tine 6. Thus any swap with cost > c(e ,fp) is not among the

P
th Targest swap is the

Now suppose g < Lg:]. The number of swaps with cost < c(e_,f)

q smallest, and can be deleted. Note that the h.
n, +1 - hi = r%'n;] th smallest. Thus all swaps deleted in Iines 7-14

have cost = C<ei’fi) > c(ep,fp) as desired.

Next suppose q >E%J . Reasoning as above, the number of swaps

with cost = cle_,f 1sW$
(p P) = ‘

be executed, and Tines 7-14 execute the correct swaps.

f%;i. Thus any swap with cost < c(ep,fp) can
Hence each iteration of F deletes or executes the correct swaps.
Since n always decreases, eventually the Toop halts with B as the
desired base.
Now we discuss the timing. We start by observing that one
iteration of Tines 2-14 is 0(n) (where n is its current value, i.e.,
the number of elements currently in a base): First note that we maintain
a 1list of nonempty blocks Ei for use in Tines 3, 6 and 7. Let b be

the number of blocks in this Tist. Clearly b <n. Line 5 uses a

-63-

Tinear-time selection algorithm [BFPRT,SPP]. This makes Tines 3-5
0(b+n) = 0(n). Line 6 is O(b) = 0(n) if a Tinear-time weighted median
algorithm [JM] is used. Similarly lines 7-14 are 0(n).

Next we show that each iteration of lines 2-14 reduces n by at Teast {%.
In a given iteration, let D index the blocks where deletions are made,

i.e., D= {i] in Tine 8, c(ei,f.) > (<) c(e_,f)}. .Then n decreases by

1 p™p
DIRLE) "i . Note that ks s:%%QEby Tine 6. Thus
“ieD ieD 4 ' iéD L
P
3 n_n
n, = k., =) k, - k. 2>n-5= -+
jep T qep ToqE1 1 qgp 14204

These inequalities imply n decreases by at 1east{% as desired..

Finally let o be the value of n in the initial iteration of

[se]

Tines 2-14. In the jth jteration n < (lédan . Since) (lé)Jn =
167 70 =0 16 ©

O(HO), we see that the total timepis O(no) as desireq. I

-64-

7. Root-Constrained Directed Spanning Trees,

This section gives an algorithm that finds a smallest directed

- 3 e, e maadema, v cemln

R R U e S e ~ o~ e~ dlaadt o s
Spanning iree riuted at a YIven Ver LEA v, Sulrt uriau S

v has a given degree
q. The time is O(min(ﬂ11ogrw,n2)), the same as for the unconstrained
problem. First we reviéw tHe unconstrained minimum directed spanning
tree algorithm. Then we present our algorithm. Finally we show a lower ,
bound on the efficiency of any algorithm using our approach.

Let G be a directed graph with n vertices and
m edges. Anedge e= (x,y), directed from x toy, hasheady and tail x; we also
use the notation h(e) = y, t(e) = x. As usual when we contract a set
of edges C to form G/C, we designate vertices and edges by their names
in G. If e is an edge of both G and G/C, we write h(e,G) or h(e,G/C)

when it is necessary to specify the graph that e is considered to be in.

A11 paths and cycles we consider are directed. A directed spanning

tree rooted at v is a set of edges such that v is the head of no edge, and

every other vertex w is the head of exactly one edge and is on a path
from v to w. (This is also called an outtree; our methods easily adapt
to intrees.) We sometimes abbreviate "directed spanning tree rooted at v"
to "spanning tree". Since we are only concerned with trees rooted at v,
we can assume that the given graph G has no edges directed to v.
This implies that v is not 1nvdny directed cycle.
Now we review Karp's derivation of the minimum directed spanning
tree algorithm [K]. We specialize the derivation from the general case
of branchings to the case of directed spanning trees rooted at v. An
edge is called critical if no edge with the same head has smaller cost.

A critical ¢ycle (spanning tree) is a cycle (spanning tree) with all

edges critical. If a critical spanning tree exists it is a

-5~

minimum spanning tree. However, the critical edges do not necessarily
give a spanning tree: a subgraph composed of one critical edge directed
to each vertex except v may contain cycles.

Let C be a critical cycle. The reduced graph for C is the graph

G/C, with the cost function of G modified as follows: If g is an edge of
G with t(g) # C and h(g) ¢ C and g' is the edge of C with h(g') = h(g),
then in the reduced graph g costs c(g) - c(g'). A1l other edges of G/C
have their cost unchanged.

The following result, proved in [K], is central.
Lemma 751. Let C be a critical cycle. In the reduced graph for C, let
T be a minimum spanning tree rooted at v. Let e be the edge of T with
h(e,6/C) = C." Let e' be the edge of C with h(e',6) = h(e,6). Then in

| « .
G, T+ C-e 1is a minimum spanning tree rooted at v. [J

The result implies an efficient algorithm for a minimum directed
spanning tree, due to Edmonds [E]. The algorithm works in two phases.
Phase I finds critical edges and places them in a set F. In the process
it finds and reduces critical cycles C. Phase I halts with the edges
of the desired tree contained in F and the reduced cycles C. Phase II
extracts the desired tree from F and the C's, using Lemma 7.1. It halts

with F as the desired tree.

* e exists since by assumption G has no edges directed to v, whence v ¢ C.

-66—-

Phase I:
1. F: = 0;

2. while some vertex w # v in the current graph is not the head of
an edge in F do

begin

ANAANPAS
3. let e be a smallest edge of the current graph with h(e) = w;
4, if t(e) does not descend from h(c) in F then add e to F

else begin
AR AR S

5. let C be the (critical) cycle formed by e and the path from
h(e) to t(e) in F;
6. reduce C;
7. F: = F - C;
end end;
B, PR
Phase 1I:
8. while the graph is a reduced graph G/C for some cycle C 22»
begin
9. let e be the edge of F with h(e,G/C) = C;
10. let e be the edge of C with h(e',G) = h(e,G);
11. F: =F+C - e}
end;

This algorithm, with the correct choice of data structures, is

O(min(m Tog n, n2)) [CFM,T].

Now we consider the root-constrained directed spanning tree problem.
Given is a directed graph G. Each edge has a real-valued cost and a color;
the green edges are directed from v, and the remaining edges are red (red
edges may be directed from v). We seek a smallest spanning tree rooted at v

with exactly q green edges.

-57~

Unlike the case of undirected spanning trees, the directed spanning trees
do not form a matroid. Instead they are the intersection of a graphic and a W
partition matroid. Because of this, the Augmentation Theorem fails for
directed spanning trees. This is illustrated by the directed graph in
Figure 7.1. Figure 7.2 gives the optimal trees T2,T3 and T4 (with 2, 3, and
4 red edges, respectively), all of which are unique. These trees do not
differ by a simple swap of edges.

To overcome this difficulty we broaden the notion of swap so that
several swaps may be used to derive one tree from another. More precisely,
if T is a directed spanning tree rooted at v, (e,f) is a swap for T if
edge e ¢ T is green, T ¢ T is red, and h(e) = h(f). As usual the cost of
(e,f) is c(f) - c(e).

(e,f) is a complete swap if T-e+f is a spanning tree. This holds

if and only if t(f) does not descend from h(f) in T. Otherwise, if T-e +f

is not a spanning tree, (e,f) is an incomplete swap.

Now we give our algorithm for the root-constrained directed spanning
tree problem. Let the given cost function be ¢c. Let p= 1+ min{|c(e)-c(f)]]

e is green, f is red, h(e) = h(f)}. Define a new cost function c' as follows:

It

c'(e) = c(e) + y, if e is green,

fl

c(e), if e is red.

Using cost c', execute Phase I of Edmonds' algorithm. This finds a critical

tree F in a reduced graph; F contains all the green edges, by choice of c'.
Next execute procedure G, given below, to make swaps until F

contains q green edges. Finally, execute Phase II to derive the

tree corresponding to F in the original graph.

-68-

procedure G;
AAAAAANAAAAA L

begin
At
1. while F has more than g green edges do
B e Al
2. if no swap exists then halt comment the desired tree does
not exist;

else begin
PRI QAR
3. let (e,f) be a smallest swap;
4. if t(f) does not descend from h(f) in F then F: =F-e+f
else begin

5. let C be the cycle formed by f and the path from
h(f) to t(f) in F;

6. reduce C;
7. F: = F - C;

end end end G;
PR Arhelts pdutiles

Suppose G is called on the graph of Figure 7.1 with the cost function
shown and q = 2. Figure 7.3 illustrates the swaps done by G. An incomplete
swap is illustrated by showing the reduced graph; a complete swap is
i1lustrated by showing the new tree F (in the reduced graph).

Now we show that the algorithm is correct.- The desired tree remains the
same if the given cost function ¢ is changed by adding a constant to all
green edges. Call such a function d. We will exhibit a d such that the
following is true:

(1) Ev?ry tiTe the algorithm adds a red edge to F, it is critical
for d).

(2) Every reduction is made for a critical cycle (for d).

(3) Every green edge in F at the end of G is critical (for d) in
the final graph.

Using Lemma 7.1, it is easy to show that these conditions imply

the algorithm finds a minimum directed spanning tree rooted at v for the

-69-

cost function d. Also it is clear that the algorithm finds a tree with
q green edges. Together these properties show the algorithm is correct.
Now consider the first step of the algorithm, Phase I. d, c, and
¢' are identical on the red edges. Thus the first step
satisfies (1) - (3). Hence it remains only to show (1) - (3) for procedure G.
We begin by introducing some notation. If b is any cost function,
call an edge b-critical if it is critical when b is the cost function;
similarly for a tree or cycle. Let p be the number of iterations of the

loop of Tines 1-8 of G. Let the swaps done by G be (ei,f.), i=1,...,p.

;
For i =0, 1,...,p Tet G, be the graph at the end of the ith jteration;

Tet ¢ be the cost function at the end of the ith iteration; if swap (ei’fi)
is incomplete, let Ci be the critical cycle that is reduced. Hence Cs is
the cost function in G,: <ei5f1) is a smallest swap for c;_ ;5 if C; exists

then Gi = Gi_l/ﬁi. (ATthough cycles Ci are indexed from 1 to p, Ci exists
f.)).

only for incomplete swaps (ei, ;
We start by showing the red edges of F are critical with respect

to other red edges.

Lemma 7.2. In graph Gi’ let f and g be red edges, with feF, g¢F, and

h(f) = h(g). Then ci(g) > Ci(f)'

Proof. The proof is by induction on i. For i = 0 the Lemma holds because
Phase I satisfies (1) - (2) (and d = c on red edges).

For the inductive step, suppose the Lemma holds for Gi—l and
consider swap (ei’fi)" If this swap is complete, line 4 adds fi to F. The
Lemma holds for fi’ since (ej,fi) is a smallest swap. It continues to hold
for other red edges f ¢ F. Hence it holds for all red edges f.

Next suppose (ei’fi) is incomplete. In G., if f is a red edge of
F then h(f,Gi) 2 Ci’ since h(ei,Gi) = Ci' By induction
the Lemma holds for f. [

-70-

In Figure 7.3 the cost of swaps is increasing. This illustrates

the following result.

Lemma 7.3. The cost of swaps is nondecreasing, i.e., for i=1,...,p-1,
Ciap (&5470F541) = S5 q(8:T40

Proof. First suppose (ei’fi) is a complete swap. Line 4 does not create
new swaps, nor does it change the cost of existing swaps. The desired
inequality follows, since (ei’fi) has smallest cost.

Next suppose (ei’fi) is incomplete. If'(ei+1’f1+1) is valid before
(ej,fi) is executed, its cost is not changed by lines 5-7 (even if
h(f1.+1,G1._1 Eci)' Again the desired inequality follows. Thus suppose
(e1+1,fi+1) is not valid before (ei’fi)' It is easy to see that both
h(ei+1’Gi-l)’ h(fi+1,G1_1) e Cs. Since only one green edge of F has its
head 1in Ci’ 41 T & So when Ci is reduced €iy © fi' Also

Ci-l(fi+1) < Ci—l(fi+1) by Lemma 7.2. Thus Ci(fi+1) = (f

¢i1fin) -
Ci—l(fi+1) > 0, and Ci(ei+1) = ci-l(ei) - Ci-l(f1>' So Ci(ei+1’fi+1) >

Ci«l(fi) - Ci—l(ei)’ which is the desired inequality. [

Lemma 7.3 is the analog of Corollary 3.3 for matroids. As with the
latter result, Lemma 7.3 implies that the inequality version of our problem
(i.e., finding a smallest spanning tree where the root has degree at least or

at most q) can be solved as efficiently as the equality version.

Now we derive the analog of Lemma 7.2 for green edges.
Lemma 7.4. In graph Gi’ Tet e and g be green edges with e e F, g ¢ F,
and h(e) = h(g). Then ci(g) > ci(e).
Proof. In Gi’ if h(e) = h(g) and ci(g) > ci(e), then cj(g) > cj(e) for
all j = i. This is true because any reduction after the ith jteration
decreases the cost of g and e by the same amount. Now it is easy to see
that the Lemma follows from this special case: ¢ = ey in a complete swap
(ek,fk); Ci’ i >k, is the first cycle to be reduced that contains h(g,Gk);

and e = e, in the incomplete swap (ei’fi)‘

-71-

Lemma 7.3 shows C1-1<ei’f1) > ck_l(ek,fk). Thus ci(e) = Ci~1(ei) -

c; ,(g) and c,zl(f,) = C,

i-1 K- k i-1

(f,), by the hypotheses of the special case.

Hence ci(e) > C. 1(g) - Cy (fk) = ci(g) as desired. [

Now we show that the algorithm satisfies properties (1)-(3) with
respect to the cost function d defined as follows:

d(g) = c(g) + cp_l(ep,f), if g is green,

p
= c(q) , if g is red.

Define similar functions di’ i=0, ..., pas follows:

d. (g)

; +c .(e ,f), if g is green,

i p-1""p° ' p

I

O
—

(=
~

, 1f g 1s red.

I

O
—

(&
~—

Suppose the original cost function ¢ is changed to d. It is easy to see
that d0 is the cost function at the end of Phase I, and di’ i=1,...,p
is the cost function at the end of the ith iteration. This follows by
induction. (Observe that in a reduction if c(g) changes to c(g) - c(g'),
then g' is in the cycle, hence red, so c(g') = d(g").)

Also define Ri’ i=0,...,p as the forest of red edges in Gi that
are in F. Now it is easy to see that Lemma 7.5 below is a statemént of
properties (1) - (2), and Lemma 7.6 is property (3).

Lemma 7.5. For i=0,...,D, Ri is di-critica1 in Gi' Further for i=1,
... P, if swap (ei’fi) is incomplete and contracts cycle Ci’ then Ci is
d;_q-critical.

Proof. We use induction on i. For the base case, note that F is initially
co—critical and contains all the green edges. Since <y and dO are identical
on red edges, RO is dO-critica1 in GO. |

Now suppose 1 < i < p. The ith iteration does swap (ei’fi)' We
is

start by observing that R, , + f; is di_l*cr1t1ca1: R. 1

'I“'l(f'l) == C'i-].(e'i af_l) s - Ck_l(eksf) = Ck_l(g) - Ck_l(fk)- Note that Ckml(g)

-72-

di_l~critica1 by induction. Consider edge fi’ If f is a red edge with

h(f) = h(fi)’ then ¢, _;

(f) = di—l(fi) as desired. Next suppose e is a green edge with

(f) = Ci—l(fi) by the choice of (ei’fi)‘ Thus

1
h(e) = h(fi). Lemma 7.4 shows Ci—l(e) > Ci-l(ei)' Lemma 7.3 shows

f) =

f) z c;_qlessfi). Thus dy j(e) = c. ;(e) + Cp—l(ep’ 5

Cp~1(ep’ p -1
Ci-l(ei) + Ci—l(ei’fi) = Ci—l(fi) = di—l(fi) as desired.

Now suppose (ei’fi) is a complete swap. Then Ry = R, . + f., and
d; = dyi 4 (since . = Ci—l)' Thuskthébabové paragraph shows R. is
di-critica1, as desired.

Next suppose (ei’fi) is incomplete. The contracted cycle C, is
contained in Ry , + f. and thus is dy_q-critical. It remains to show that

R, 1s dj-critical. An edge f e R, is in R._; and does not have its head

in Ci (since h(ei’Gi—l) € Ci)' Hence no costs are modified at vertex

h(f,Gikl) and f remains critical in Gi' 0

Lemma 7.6. At the end of procedure G, every green edge of F is dp-critica]

in G_.
in b
Proof. Consider a green edge e € F in Gp. If g is a green edge with

h(g,G) = h(e,Gp), then ¢ _(g) = c_(e) by Lemma 7.4, whence d_(g) = d (e).

p p p p p
If f is a red edge with h(f,Gp) = h(e,Gp), then (e,f) is a swap in Gp = Gp—l'
Si i ,'F a2) = s . A i
ince it costs no Tess than (ep p) cp(e f) = cp(ep fp) dding
cp(e) to both sides gives dp(f) > dp(e). O

Since properties (1) - (3) are established, the algorithm is
correct. (It Ts‘easy‘to see that if procedure G halts in 1fne 2,
there is no spanning tree rooted at v with g green edges.)

It is not difficult to implement the algorithm in time

O(min(nl]ogrw,nz)) using the data structures of [T,CFM]. This involves

-73=

using one UNION-FIND structure to represent vertices of the reduced graph,
~another to represent trees in the forest F, and priority aueues to keep
track of the costs of all edges with a given head [T]. The cycles are
represented by a tree structure [CFM]. In addition, procedure G uses a

priority queue of swaps (for Tine 3).

Theorem 7.1. A smallest root-constrained directed spanning tree can be
found in time O(min(m]ogv1,n2)) and space O(m+n).
Proof. Correctness follows from Lemmas 7.1-6 and the accompanying discussion.

Further details concerning the time bound are left to the reader. [

We conclude this section with a Tower bound for our approach. Say
that an algorithm on a directed graph "uses the swap sequence approach"
if, given a graph as shown in Figure 7.4 (a), it determines the complete
swaps found by procedure G (with gq=1). Note that tﬁe algorithm need not
determine the incomplete swaps; as usual the algorithm need not determine
the order of the complete swaps. Also, although swaps may be for reduced
graphs, they are specified by the edges of the original graph.

Lemma 7.7. Any algorithm on a directed graph that uses the swap sequence
approach requires Q(sort (n)) time.

Proof. As in Lemma 4.1 we show that with only 0(n) extra processing, the
algorithm, called on én n+2 vertex graph, can sort n numbers.

Consider n arbitrary numbers Xjo oo X Without Toss of generality
assume that the numbers are distinct and positive. (To achieve the former
condition break ties by using the indices of fhe numbers.) These numbers
correspond to the directed graph shown in Figure 7.4 (a). More precisely,
the graph contains vertices v, w, and Us> i=1,...,n. Foreachi, i=1,

.» h, there is a green edge (v,ui) costing -x;, and red edges (w,ui)

-

and (ui,w) both costing X there is also a green edge (v,w) costing O.
Let the given numbers in increasing order by Yio ...,yn. Now we

show that the swaps found by G are
(4) ({vsw)s (upaw))s ((vaug)s (wsug))s ((vaug) (ugsw))s ooes ((viug) s (wsus),

(Cvsusds (uspgsv))s oo s Clvius 1) (wsuy 4))s (Cvsup 1) (up 5 w)).

n-1
To do this we prove. inductively that for i = 1,...,n the first 21i-1
swaps are as in (4) and give the graph shown in Figure 7.4 (b). There
vertices u;, ..., u;_; and w are contracted into a new vertex, which we
call w; the edges directed to this vertex have their cost modified so that
(uj,w) costs X5= %401 for j = i; the spanning tree consists of edges
(V,Uj), joziand (ug,w).

For the base case i = 1, note that in the original graph the smallest
swap at vertex w is ((v,w), (ul,w)) costing X1 and the smallest swap at
u; is ((v,ui), (w,ui)) costing in‘ Hence the first swap is as in (4).
Since this is a complete swap no contraction or cost modification occurs.

This gives Figure 7.4 (b) for i = 1, where we take Xg= 0.

Now assume the first 2i-1 swaps are as in the induztion hypothesis.
We do the inductive step by analyzing the next two swaps. For the 2ith
swap, the smallest swap at uj (j=1) is ((v,uj), (w,uj)) costing 2xj, and
there are no swaps at w. Hence the 2ith swap is ((v,ui), (w,ui)) as in
(4). This incomplete swap contracts vertex u; into w, changing the cost

of (uj,w) to X5 = X4 j>1; the new green edge (v,w) gets cost 2%

For the 27 + 1st swap, the smallest swap at w is ((v,w),

(U1+13W)) costing Xipp T %5e (Note that (v,w) derives from the original edge

(v,ui), so this swap is also designated as ((v,ui), (u1+1,w))). The

smallest swap at uj (3>1) is still ((v,uj), (w,uj)) costing 2xj. Hence

-7

the 2 i+ 15t swap is ((v,ui), (u1+1,w)), as in (4). Since this is a complete
swap it is easy to see that the rest of the inductive assertion holds. This
completes the induction and establishes (4).

Now we describe the procedure. Given numbers Xis eens X, construct
the graph of Figure 7.4 (a) and call the algorithm to find the complete
swaps. (These are the odd swaps of (4)). Then set an array S so that
S(i) = 3 if ((v,ui), (uj,w)) is a complete swap; further, S(0) = j where
((v,w), (uj,w)) is a complete swap. (4) implies that the sequence S(0),

SZ(O),..., s"(0) gives the indices of the numbers in sorted order. Since

besides the algorithm only 0(n) time is used, this gives the desired result. [

Lemma 7.7 can be extended to incorporate a lower bound on the time to

find a minimum directed spanning tree, as in Corollary 4.1.

~76-~

References

[AHU] A. Aho, J. Hopcroft and J. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[B] T. H. Brylawski, "Some properties of basic families of subsets,"
Discrete Math. 6, (1973), pp. 333-341.

[BFPRT] M. Blum, R. Floyd, V. Pratt, R. Rivest, and R. Tarjan, "Time bounds
for selection," J. Comput. Systems Sci. 7, (1973), pp. 448-461.

[CFM] P. M. Camerini, L. Fratta,and F. Maffioli, "A note on finding optimum
branchings," Networks, to appear.

[CT] D. Cheriton and R. E. Tarjan, "Finding minimum spanning trees,"
SIAM J. on Computing 5, (1976), pp. 724-741.

[E] J. Edmonds, "Optimum branchings," J. Res. NBS 71B, (1967), pp. 233-240.

[EKZ] P. van Emde Boas, R. Kaas, and E.Zijlstra, "Design and implementation
of an efficient priority queue," Math. Systems Theory 10, 1977,
pp.99-127.

[F] N. Friedman, "Some results on the effect of arithmetics on comparison
problems," Proc. 13th Annual Symp. on Switching and Automata Theory,
College Park, Maryland, 1972, pp. 139-143.

[Gal] H. N. Gabow, "A good algorithm for smallest spanning trees with a
degree constraint," Networks, 8 (1978), pp. 201-208.

[Ga2] H. N. Gabow, "An efficient implementation of Edmonds' algorithm for
maximum matching on graphs," J.ACM 23 (1976), 221-234.

[GK] F. Glover and D. Klingman, "Finding minimum spanning trees with a
fixed number of links at a node," Report No. 74-5, Research Report
CS #169, Center for Cybernetic Studies, University of Texas at Austin,
Austin, Texas, 1974.

[G1] F. Glover, "Maximum matching in a convex bipartite graph," Naval
Research Logistics Quarterly 14, (1967), pp. 313-316.

[GT] H. N. Gabow and R. E. Tarjan, "Efficient algorithms for simple matroid
intersection problems," Proc. 20th Annual Symp. on Foundations of
Comp. Sci., San Juan, Puerto Rico, 1979, pp.196-204.

[Gu] D. Gusfield, "Matroid optimization with the interleaving of two
ordered sets," preprint.

[HS] E. Horowitz, and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press, Potomac, Maryland, 1978.

[J] J. R. Jackson, "Scheduling a production Tine to minimize maximum

tardiness," Research Rept. 43, 1955, Management Sci. Research
Project, Univ. of Calif. at Los Angeles.

-77-

[JaMm] D. B. Johnson and T. Mizoguchi, "Selecting the Kth element '
in X+Y and X1+X2 . +Xm,“ SIAM J. Comput. 7, (1978), pp. 147-153.

[K] R. M. Karp, "A simple derivation of Edmonds' algorithm for optimum
branchings,” Networks 1, (1971), pp. 265-272.

[KM] T. Kameda and I. Munro, "A O(VE) algorithm for maximum matching of
graphs," Computing 12, 1974, pp. 91-98.

[L1] E. L. Lawler, Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart and Winston, New York (1976).

[L2] E.L. Lawler, "Matroid intersection algorithms," Math. Programming 9,
(1975), pp. 31-56.

[LF] T. Lang and E. B. Fernandez, "Scheduling of unit-length independent
tasks with execution constraints," Inf. Proc Letters 4, (1976),
pp. 95-98.

[LP] W. Lipski, Jr., and F. P. Preparata, "Efficient algorithms for finding
maximum matchings in convex bipartite graphs and related problems,"
preprint.

[P] C. Papadimitriou, "The complexity of the capacitated tree problem,"
Networks 8, (1978), pp. 217-230.

[S] M. I. Shamos, "Geometry and statistics: Problems at the interface,"
in Algorithms and Complexity: New Directions and Recent Results,
J. F. Traub ed., Academic Press, N. Y., 1976, pp. 251-280.

[SP] P. M. Spira and A. Pan, "On finding and updating spanning trees and
shortest paths," SIAM J on Computing 4, (1975), pp. 375-380.

[SPP] A. Schonhage, M. Paterson, and N. Pippenger, "Finding the median,"
J. Comptr. Syst. Sci. 13, (1976), pp. 184-199.

[ST] D. Sleator and R. E. Tarjan, "A data structure for dynamic trees,"
Proc. 13th Annual ACM Symp. on Th. of Computing, Milwaukee, Wisc.,
1981, pp. 114-122.

[T1] R. E. Tarjan, "Finding optimum branchings," Networks 7, (1977),
pp. 25-35. ‘

[T2] R. E. Tarjan, "Minimum spanning trees," unpublished manuscript, 1981.

[u] R. A. Ubelmesser, "Finding smallest spanning trees with one degree

constraint," M. S. Thesis, Dept. of Computer Science, University of
Colo., Boulder, Colorado, 1978.

[W] D. J. A. Welsh, Matroid Theory, Academic Press, New York, 1976.

[Y] A. C. Xao, "An O(|E[Tog Tog |V] algorithm for finding minimum spanning
trees," Information Processing Letters 4, (1975), pp. 21-23.

e

8
e

g‘:m.m“n — —

e

9
Figure 2.1.

Graphic matroid with colors and edge costs.

=B

-2+3

1
.w—-——um e ECIEm
2 -
- 1 6
38 /”‘/
~
Bl=BO—9+4 82
4 6
B4=B3—1+5
Figure 2.2.

Optimum bases and swap sequence.

1
— — A
o 7
/
8//
&
9
Ho

-7GQ~

H

Figure 3.1

Restricted swap sequence.

= H,-8+6

-80~

mmmmm —
4
8
s
[J
(a)
6 5
8 1
(b)
Figure 3.2.
Algorithm A.
(a) B~ G, +Ry

(b) The two recursive calls.

-81-

Figure 4.1. Lower bound graph.

-82-

Figure 4.2,

A graph with M = {(5,6), (4,6), (3,8), (1,7),(9,15), (2,10)} andF = {6,8,2}.

-83-

T

3

Figure 4.3.

for Figure 4.2.

~

(a) H

~84-

Figure 4.4.
Derived graph for Figure 4.2.

-85~

0 1 2 3 4
green 2 5 3
jobs
red 1 8 6
jobs 4
Figure 5.1.

Simple job scheduling matroid, with swap sequence (7,1), (5,6), (2,4),(3,8).

7,0,0 5,0,0
: 73090 2903 5,"1,0
/ \
©,1,1 2.1,1 5.1,1 7,0,0 -=,1,1 2,0,0 5.1,1 3,1,1
(a) (b) ’
Figure 5.2.

Balanced tree for (a) BO (b) BO -7+1.

-86-

Figure 7.1
Example directed craph.

Figure 7.2
Optimal trees for Figure 7.1.

-8 7 -

(a) (b)
(9,10) - incomplete (2,4) - incomplete

N EJ

(-2,1) - complete

Figure 7.3.
Swaps done by procedure G.

-88~-

W
(a) Figure 7.4.

(a) Lower bound directed graph.
(b) Derived graph.

